Dynamic spatial heterogeneity reveals interdependence of marine faunal density and fishery

removals

Lewis A.K. Barnett ${ }^{1 *}$, Eric J. Ward ${ }^{2}$, Jason E. Jannot ${ }^{3}$, Andrew O. Shelton ${ }^{2}$

${ }^{1}$ School of Aquatic \& Fishery Sciences, University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98195, USA \& Visiting Scientist at ${ }^{2}$
${ }^{2}$ Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112
${ }^{3}$ Fisheries Resource Assessment and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112

* Corresponding author: lewis.barnett@noaa.gov; present address: Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E, Seattle, WA 98115

Declarations of interest: none

Abstract

The spatial structure and dynamics of populations, their environment, interacting species, and anthropogenic stressors influences community stability and ecological resilience. Despite the importance of spatial processes in ecological outcomes and increasing desire to implement ecosystem-based management, fine-scale spatial dynamics have been rarely incorporated in marine fisheries management. However, advances in population modeling and data availability provide the necessary ingredients to address this disconnect between the fields of ecology and fisheries. We used random forests and spatial indices to quantify spatial heterogeneity and dynamics of US west coast demersal marine faunal density (biomass of a community or assemblage per unit area) and the total removals (catches plus discards) from the system by the groundfish bottom trawl fishery from 2002 to 2017. We expected spatial heterogeneity of removals and density to increase following implementation of depth and habitat closures--due to proximally increasing density gradients and fishing-the-line--and following catch shares because of fleet consolidation and behavioral consequences of eliminating the race to fish. However, we found mixed responses, where at the broadest community levels spatial variation in removals and density declined with habitat closures, while spatial autocorrelation of removals increased with habitat closures and declined with catch shares. Our results reveal a complex interdependence between spatial distributions of faunal density and fishery removals that has been absent in previous studies focusing on catch only, and shows how these patterns are shaped by marine policy. The spatial variation of density and removals were positively correlated within year (i.e., each responded with the same sign and timescale), while there was also evidence that interannual changes in the spatial variation of removals among years led those of density by one year (i.e., increases in patchiness of removals were followed by increased patchiness of density). These

results hint at the presence of a stronger than expected top-down effect of fishing, given that this system is considered to be dominated by strong bottom-up effects of environmental variation on primary and secondary productivity.

Keywords: spatial heterogeneity, ecological stability, discards, species distributions, spatial dynamics

Introduction

Incorporating spatial heterogeneity--or variability--of biotic and abiotic processes can be critical for the effectiveness of natural resource management (Noss, 1983; Turner, 1989; Turner et al., 1995). Many population processes - births, deaths, strength of density dependence, and immigration vary across space (Bjørnstad et al., 1999), and these patterns can be related to static habitat features or more ephemeral environmental conditions. Not accounting for these spatial processes when they are present can lead to biased predictions of population dynamics (Cadrin et al., 2018; Punt, 2019) and suboptimal management outcomes (Sanchirico and Wilen, 2005). The distribution of pressures affecting wild populations - including human disturbances - also often has a spatial component. Spatially heterogenous (i.e., unevenly distributed) human impacts include, for example, oil spills (Rooker et al., 2013), chemical contamination and eutrophication from sewage or runoff, habitat loss and fragmentation from logging, urbanization, and agriculture, and direct removals from hunting or fishing (Dulvy et al., 2004). Spatially heterogenous human impacts may also have positive effects, particularly for conservation examples include parks or reserves which can preserve habitat, increase population densities, and increase biodiversity (Baskett and Barnett, 2015; Bruner et al., 2001; Halpern and Warner, 2002; Lester et al., 2009). Regardless of the direction of human impacts or other pressures, ignoring spatial variability in impacts can result in sub-optimal management strategies and outcomes (Sanchirico and Wilen, 2005; Ying et al., 2011). How best to incorporate spatial structure in the design and assessment of natural resource use policy is an outstanding question.

Together, the spatial and temporal heterogeneity in habitat, anthropogenic pressures, and environmental drivers significantly influence community stability (Hassell, 2000; Huffaker, 1958; Tilman and Kareiva, 1997) and ecological resilience (Barnett and Baskett, 2015; Baskett et
al., 2006; Holling, 1973; Takashina and Mougi, 2014). The relative importance of habitat, human disturbance, or environmental variability depends on the life histories of the species in question and the spatial scale being analyzed (Rouyer et al., 2008). In addition, these drivers could have complex interactions such that species affected by higher rates of harvest, for example, may experience larger population fluctuations as a result of environmental variability (Essington et al., 2015; Hsieh et al., 2006). Even effects of a single driver can be complex. Although fishing is thought to typically diminish spatial population structure and homogenize density (reviewed by Ciannelli et al., 2013), spatial variation in recruitment may increase with harvesting in some cases (Hsieh et al., 2008; Hsieh et al., 2010), and more nuanced patterns may arise depending on the spatial distribution of harvest and the presence and form of density dependent growth or movement.

Predicting the spatial variability of fishery take is complicated, because in addition to biological factors, such as availability of fish, a suite of economic drivers can also influence the choice of where to fish. Effort is typically concentrated in coastal areas (Stewart et al., 2010), but other factors that could affect the spatial distribution of effort include prices offered by producers, fuel prices, and distances to port or protected areas (Girardin et al., 2017; Sanchirico and Wilen, 1999; Stelzenmüller et al., 2008). Under the ideal free distribution (IFD; Fretwell and Lucas, 1970), effort is expected to positively correlate with available biomass. There are multiple examples of fishing effort approximating the ideal free distribution (Gillis, 2003), but there are also situations where the spatial distribution of effort departs from the ideal free distribution (Abernethy et al., 2007) as fishers often choose fishing locations based on expected revenue among other factors (Abbott et al., 2011; Girardin et al., 2017; Haynie et al., 2009; Holland and Sutinen, 2000; Kuriyama et al., In review). These factors that could cause departures from ideal
free distribution include the costs of steaming (fuel and time), gear limitations or restrictions, conflict avoidance, variability in vessel size, habits, and experience of individual fishers, or for multi-species fisheries, fluctuations in the relative abundance and biomass distribution of target and nontarget or protected species.

Despite the known consequences of spatial heterogeneity on population and community dynamics (Hassell, 2000; Huffaker, 1958; Tilman and Kareiva, 1997), spatial processes have rarely been incorporated into systematic management of marine fisheries at scales fine enough to match that of the underlying biological process (but see, e.g., salmon harvest allocation by the Pacific Salmon Commission: http://www.psc.org/). However, there is increasing recognition that quantifying the effects of spatial heterogeneity on the amount and distribution of fishery catches and discards is important for implementing ecosystem-based fishery management (EBFM; Katsanevakis et al., 2011; Link, 2005). Spatial processes are likely particularly important for management of marine systems because fishing is a dominant driver of marine community change. The spatial distribution of fishing effort likely affects spatial population and community dynamics through catch of target and nontarget species and physical damage to habitat from fishing gear, particularly dredges and trawls (Amoroso et al., 2018; Kaiser et al., 2002; Watling and Norse, 1998). Furthermore, the local effects of fishing have the potential to influence ecological dynamics at larger spatial scales in marine systems because the physical features of oceans create the potential for long-distance dispersal (Kinlan and Gaines, 2003; Strathmann, 1990). This combination of physical connectivity and influence of harvesting on marine ecosystems has led to increasing desire for marine spatial planning, from implementation of notake areas to spatial gear restrictions and area-specific catch limits (Crowder and Norse, 2008; Wood et al., 2008).

Despite the recognition that spatial processes are important to consider in marine fisheries management, there is still debate regarding how spatial management policies affect catches and abundance beyond closure boundaries (Hastings and Botsford, 1999; Hilborn et al., 2004; White and Kendall, 2007). While spatial closures typically cause biomass of harvested species to increase within the closure (Lester et al., 2009), biomasses outside can potentially decrease due to concentration of displaced fishing effort (which often occurs particularly close to closure edges) unless there is adequate "spillover" of fish moving outside (Karnauskas et al., 2011; Kellner et al., 2008; Kellner et al., 2007; Moffitt et al., 2009; Rassweiler et al., 2012; White et al., 2010). Thus, the effect of spatial closures on the amount and distribution of biomass available to fishers depends on the form and timing of density-dependent population growth and dispersal, the scale of animal movement relative to closure dimensions, the intensity and spatial distribution of fishing, and the general effect of fishing on abundance distributions (Baskett and Barnett, 2015; Ciannelli et al., 2013; Hilborn et al., 2004; Kellner et al., 2008; Moffitt et al., 2009; White and Kendall, 2007; White et al., 2011; White et al., 2010). In this study, we use an empirical example to integrate over responses of fish and fisher behavior to advance the understanding of how spatial closures and other marine policies affect the spatial dynamics of marine faunal density (biomass of a community or assemblage per unit area) and fishery take throughout a region.

To determine how the spatial dynamics of marine communities and fisheries are interconnected, we focus on groundfish and their associated bottom trawl fishery on the US west coast. This system provides an ideal case study because it is a rare instance where fine-scale spatial information on both catch and discards is available, allowing what-to our knowledgeis the first comprehensive contrast between the spatial heterogeneity of marine faunal density
and fishing mortality. Furthermore, the existence of discrete, sequential management changes in the US west coast groundfish trawl fishery during the study period provides a set of natural experiments that we use to determine the spatial consequences of marine policy changes. We leverage the presence of persistent geographical contrast in fishing effort within the study region to identify the relationship between fishing and the distribution of abundance of marine assemblages. Specifically, we tested whether interannual changes in spatial heterogeneity of demersal faunal densities were correlated with those of fishery removals across a range of timescales, and whether the policy changes during our study period altered the spatial heterogeneity of densities and removals. We expected that spatial heterogeneity of faunal densities and fishery removals would increase as fishing effort would become more concentrated in discrete areas because spatial closures would reduce the trawlable area and catch shares would cause geographical fleet consolidation.

Methods

System
US west coast demersal communities and groundfish have a prominent role in the California Current food web and support large commercial fisheries. Groundfishes are strongly connected to the larger ecosystem through pelagic larval and juvenile stages that constitute a major source of forage for other fishes, seabirds, and marine mammals (Field et al., 2007; Mills et al., 2007; Sydeman et al., 2001), and their ontogenetic movements connect benthic and pelagic productivity. The US west coast groundfish bottom trawl fleet includes approximately 60 catcher vessels, and is part of a broader catch share fishery with combined annual net revenue of $\$ 59$ million USD (catcher vessels alone net $\$ 11$ million; Errend et al., 2018; PFMC and NMFS,
2017). This fishery lands many species (~ 80 total, ~ 50 commonly) and also discards many at sea. While some of these species have seasonal migrations, there are apparently few coastwide interannual trends in spatial community structure (Tolimieri et al., 2015) and individual species distributions (Thorson et al., 2016), making this system ideal for disentangling the causes of change in the distribution of catches and local faunal densities.

Approach

To quantify spatial and temporal changes in the demersal community in response to fishing, we combined information for fishery-dependent and -independent datasets from 2002 to 2017. We created annual spatial predictions of groundfish biomass and fishery removals (see Fig. 1 for the spatial prediction domain) and then summarized these outputs with spatial statistics. To estimate spatial and temporal variation in fishery removals, we fit random forest models to the total removals (catch and discards) recorded by at-sea observers in the bottomtrawl sector of the US west coast groundfish fishery. As some fishing trips were not attended by fisheries observers, we predicted the removals from hauls that were not monitored by observers to describe the spatiotemporal distribution of removals by the entire fleet. We applied similar models to fishery-independent surveys of biomass density to assess the extent to which interannual changes in the spatial distribution of removals might have been caused by changes in animal movement and productivity as compared to fleet dynamics. Following previous studies, which demonstrated that the influence of fishing on ecosystems is best identified at the guild and community level (Fay et al., 2013; Fulton et al., 2005; Samhouri et al., 2009; Tam et al., 2017), we summed catches into assemblages: all animals, fishes, predatory fishes, forage fishes, flatfishes, rockfishes and protected fishes (see Tables S1-7 for details of the taxonomic
composition of each group). When testing for an effect of policy changes on the distribution of density and removals, we compared our outputs for each assemblage among sets of years defined by their prevailing management type or "regime." Finally, we describe how we computed spatial heterogeneity indices for each group and time period to develop spatial ecosystem indicators and assess whether and how changes in the spatial heterogeneity of removals is related to that of biomass density. We elaborate on each of these processes below.

Modeling observed catch

To estimate the spatial and temporal pattern of fishery removals, we analyzed data reported by at-sea observations of catch provided by the West Coast Groundfish Observer Program (WCGOP) at the Northwest Fisheries Science Center. The WCGOP records catch discarded at-sea, which is not recorded in landings data. Observers were present on 100% of trips since 2011 but only approximately 20% of trips between 2002 and 2010. We performed several filtering steps to ensure data quality. We confirmed that each haul was unique after merging the observer and logbook databases based on the fish ticket numbers from recorded landings. We removed hauls missing fundamental covariate data (e.g., location) and erroneous location or depth. Fishery logbook data provides basic information for the unobserved hauls during the 2000's, but the total catches are uncertain given lack of incentives for reporting discards. Exploratory analyses showed that observed trips were representative of fisher behavior for trips without observers; there were no substantial differences in the spatial (location and depth) or temporal (day of year and time of day) distribution of fishing effort between trips with and without observers. Therefore, we used random forest models fit to the observed hauls from 2002 to 2010 to predict removals from the remaining unobserved hauls in the logbook data (R package
'randomForest'; R v3.5.1, (R Core Team, 2018)). We chose to make predictions with random forests because they had the best predictive skill compared to other spatial models (also see Stock et al., 2018).

The full fitted models included the following predictor variables: location (haul midpoint northing and easting, as linear and quadratic terms); depth (natural log-transformed average depth of haul in meters); date (day of year); time of day (in decimal hours); fishing effort (haul duration in hours); and year (the only categorical variable). We did not include the retained catch recorded in the landings data as a predictor because exploratory analyses indicated that discarded catch quantities were independent of the retained catch within hauls. We assessed predictive performance for all model fits based on the root-mean-square error and variation explained, as derived from the feature-bagging technique of the random forest algorithm (which is analogous to cross-validation (Breiman, 2001)).

Predicting unobserved catch

To estimate total removals from all hauls performed by the fishery, we summed the known removals from the observed hauls and the predicted removals from hauls not monitored by the WCGOP. To estimate removals from unobserved hauls, we performed predictions from the random forest models fit to the WCGOP data to the haul information recorded in fishery logbook data provided by the Pacific Fisheries Information Network (representing self-reported data for each haul from all groundfish bottom-trawl vessels operating off the US west coast between 2002 and 2010; 133,716 total hauls, 25,701 of which had an observer present). Adding in 48,578 observed hauls from 2011-2016 yielded removal biomass for each assemblage from a total of 182,294 hauls from 2002 to 2016. To summarize spatial patterns of removals, we
computed the sum of known and predicted catches of each group for each cell in each year, with resolution and extent matching that for density (described in the section Modeling biomass density below). We mapped these predictions to visualize the location of anomalous cumulative removals across all years.

Modeling biomass density

To assess spatial and temporal variation in faunal density of the demersal community (see Tables S1-7), we analyzed data from the NOAA Fisheries, Northwest Fisheries Science Center, US West Coast Groundfish Bottom Trawl Survey (Bradburn et al., 2011). This annual survey occurs from May to October at depths from 55 to 1280 m , from Cape Flattery, Washington (USCanada border) to the US-Mexico border. We analyzed the 2003-2017 surveys, which consisted of 9,671 hauls, where locations were selected randomly on trawlable seafloor habitat (i.e., areas without extensive rocks or boulders) stratified by depth and latitude. The survey included hauls from within an area closed to trawling, defined by a narrow depth band (termed the trawl Rockfish Conservation Area), but not from another large block of area near the southern boundary of the region (the Cowcod Conservation Area) that was closed to all fishing. We expected that inclusion of the trawl depth closure would increase spatial heterogeneity biomass as we discuss in the section below, but that the exclusion of the southern closure would have little effect on our estimated spatial heterogeneity of biomass unless fish movement rates were quite high. We fit random forest models with similar structure to that fit to the WCGOP data, where the response variable was catch-per-area-swept ($\mathrm{kg} / \mathrm{ha}$) and predictors included location (linear and quadratic terms), log depth, day of year, and year (note that time of day was not included as the survey is constrained to daylight hours). To obtain a smooth surface of predicted
density across the footprint of the survey area, we predicted biomass density from the random forest models using depth defined by NOAA bathymetry data
(https://www.ngdc.noaa.gov/mgg/coastal/crm.html), averaged over space to match the resolution of the survey sampling grid $(\sim 2.8 \times 3.7 \mathrm{~km})$, which is the spatial resolution we used for all analyses.

To distinguish the effects of fishing on the spatial distribution of faunal densities, we separately modeled survey data from trawled (northern) and untrawled (southern) regions (Fig. 1). We defined this boundary to be just north of the Channel Islands National Park, California. We selected this as the boundary because it represented the latitude at the southernmost location of the logbook and observer data of commercial trawl activity over all years.

Evaluating the effect of management changes on spatial distributions of density and removals

We used sequential management policy changes that occurred during our study period as natural experiments to determine how shifts in the distribution of fishing effort influence the distribution of fishery removals and faunal densities. A spatial gear closure called the trawl Rockfish Conservation Area (RCA) was implemented beginning in 2002, which prohibited trawling at temporally varying depths (generally between 175 and 450 m) along the continental shelf. To protect Essential Fish Habitat, roughly 25\% of the area historically fished was closed to bottom trawling in 2006 (PFMC, 2008). Catch shares were implemented in 2011. For species regularly captured in the fishery, we expected that spatial heterogeneity of fishing effort--and therefore fishery removals--would increase due to the closure policies reducing the trawlable area and thereby concentrating effort spatially (e.g., fishing-the-line, or the tendency of fishing effort to concentrate near the boundary of fishery closures; see Table S 8 for all hypothesized
responses to changes in the fishery). Furthermore, we expected catch shares to cause fleet consolidation toward major ports (PFMC and NMFS, 2017) and to eliminate the race to fish (perhaps incentivizing shorter steam distances to reduce costs, e.g., Watson et al., 2018). However, the effect of catch shares on the spatial distribution of effort is difficult to predict, because of tradeoffs between bycatch risk avoidance and the opportunity for exploratory fishing (Branch, 2009). It is possible that the presence of fewer vessels-if spread over more area and time within the year-could reduce the spatial concentration of effort, yet there appears to be no change in effort concentration resulting from catch shares in this case (Kuriyama et al., In review).

We expected similar responses of faunal density to management shifts. We hypothesized that density distributions would become patchier as populations, and potentially productivityenhancing habitats, recover within spatial closures while relative fishing mortality increases outside closed areas due to displacement of effort and the catch-maximizing behavior of fishing-the-line (Kellner et al., 2007). Furthermore, if the prevailing assumption that fishing reduces spatial population structure holds, faunal densities should be becoming more spatially variable in response to the massive fleetwide effort reduction over the last 30 years (Hilborn et al., 2012) and subsequent rebuilding of groundfish biomass (PFMC and NMFS, 2017). Alternatively, these predicted responses may be disrupted by time lags in population responses, animal movement, density-dependence, unexpected responses of fisher behavior, or short-term fluctuations in fleetwide effort before and during the study period.

To test our hypotheses regarding the influence of management actions on spatial heterogeneity of density and removals we summarized temporal changes in patchiness corresponding to the timing of major policy changes. Within each assemblage and output
category, we pooled annual measures of spatial heterogeneity among three discrete time periods representing the phase of each new management regime described above: 1) 2002-2005, when depth closures (RCA) were implemented and fleetwide effort generally declined (Fig. S1); 2) 2006-2010, when habitat closures (EFH) were implemented and fleetwide effort increased until 2010; 3) 2011-2017, when catch shares were implemented and effort declined slightly (following a larger effort decline from 2009 to 2011). Hereafter, we will refer to these time periods by their management regime: depth closures, habitat closures, and catch shares. We tested for differences in spatial heterogeneity metrics (described in the following section) among management regimes (where the sampling unit was years) within each assemblage and output type using one-way analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) test, after confirming that there was no evidence for unequal variances.

Contrasting change in spatial heterogeneity of density and removals using spatial indices

To quantify how spatial heterogeneity of density and removals changes with time and management policies, we computed indices of spatial autocorrelation and spatial variance for each combination of outputs in each year. We chose these metrics because they describe the two main axes of easily interpretable patterns in spatial data and researchers have demonstrated that they can be leading indicators of ecological regime shifts in other systems (Kéfi et al., 2014). To visually demonstrate what these measures represent, we simulated data with varying spatial autocorrelation while keeping spatial variance constant and data with changing spatial variance while keeping spatial autocorrelation constant (Fig. S2). Figure S2 shows that spatial autocorrelation can be interpreted as a measure of clustering of similar values among nearby locations (which can be correlated with relative patch size) and spatial variation as a measure of
the strength of spatial gradients or simply the magnitude of variation across space regardless of spatial arrangement. To increase comparability among assemblages and between our study and others, we applied indices of the above metrics to the output for each assemblage as follows: from each annual set of predictions of removals, northern density, and southern density, we expressed the spatial variation in the form of the spatial coefficient of variation (CV) and Moran's I as an index of spatial autocorrelation. Annual values were standardized by subtracting each value by their group mean and dividing by their standard deviation.

To determine whether there was a relationship between the spatial pattern of fishery removals and density, we performed cross-correlation analyses for each assemblage on the time series of spatial autocorrelation and CV between removals and density in the northern portion of study region (the only area where trawl fishing occurs). This test allowed us to determine whether changes in spatial patterns of removals and density are correlated, and with what lag and sign. For example, high correlation at negative lags indicate that changes in removals lead changes in density, whereas positive lags indicate that changes in density occur prior to that of removals. Prior to performing cross-correlation tests, we pre-whitened each series (removed the autocorrelation structure) with the best fit autoregressive integrated moving average model (Johnson, 2018).

Results

The final models displayed a broad range of predictive ability across assemblages and response type and area (Table S9). In general, removals were more predictable than density. Density was better predicted in the southern part of the study region than the northern region for all fauna, fishes, predators, and flatfishes, while the opposite was true for rockfishes, forage, and
protected species. Variation explained was highest for rockfish, flatfish, and predator removals. Due to poor performance of the models predicting southern density of forage and protected species (pseudo- $R^{2}<6 \%$; Table S9), we did not include these results in map predictions or posthoc testing.

Mean predicted densities of all groups were typically highest within a band of intermediate depth on the outer shelf and near the shelf break, whereas densities of forage and protected species were sparse and patchier due to lower detection rates (Fig. 2). High densities of flatfishes also extended to shallower shelf waters north of central Oregon. Predators and rockfishes were in greatest densities at slightly deeper depths. All groups except forage species had high density areas in the far northern end of the study region, west-southwest of Cape Flattery, Washington. Another high density area common to all groups (but much less prominent for predators and protected species) was located within a small area of the outer shelf off Half Moon Bay in central California.

Across all years of the study period, cumulative removals were distributed similarly to the density distributions for most groups, with particular exceptions of forage and protected species (Fig. 3); however, the highest densities of all species combined were typically nearer to shore than removals, particularly off northern California and Oregon. Rockfish removals were somewhat more diffuse and less patchy than predicted densities, and protected species removals were much more broadly distributed than predicted densities. All removals occurred north of the Channel Islands National Park and predominantly north of Point Conception, with the majority of large removals taken north of Monterey, California. The largest concentrations of high removals were found off Washington for all groups except rockfishes and forage species.

Change in spatial heterogeneity among management regimes

The spatial CV of removals was typically highest during the beginning of the study period when managers implemented depth closures and declined in the middle years after implementation of habitat closures (Fig. 4a-g). This pattern was statistically significant for the broadest assemblages (all species, fishes, predators) and protected species (Fig. 4a-c,g; Table S10). Rockfish and forage removal spatial CVs increased significantly from the periods with depth and habitat closures to the end of the study period, when catch shares were in effect. Spatial autocorrelation of removals was typically highest during the habitat closure period (Fig. 4h-n). Furthermore, values were significantly lower in the catch share period than the depth closure period for all species, fishes, flatfishes, and protected species (Fig 4h,i,k,n). Values for rockfish and forage species were also lowest in the catch share period, yet had no significant differences between the depth closure and habitat closure periods (Fig. 41,m).

Trends in spatial heterogeneity were less consistent for density than removals. No statistically significant changes were apparent in the spatial CV or autocorrelation of density in the untrawled (southern) region (Fig 5). In the trawled (northern) region the CV of density for all species and fishes were lowest during the habitat closure period, but values in the depth closure and catch share periods were statistically indistinguishable (Fig. 6a,b). In contrast, protected species CV was highest during the habitat closure period (Fig. 6g). Spatial autocorrelation of flatfish and forage species densities in the trawled region was lowest in the habitat closure period (Fig 6k,m); although the difference between the habitat closure and catch share period was not statistically significant for forage species. Spatial autocorrelation in density of the trawled region appeared to generally increase for some groups, particularly fishes and all species combined (Fig. 6h,i); however, the differences were not statistically significant.

Leading and lagging indicators in fished areas

The cross-correlation of spatial CV indicated that for all species combined and all fishes, there were significant positive correlations between density and removals at lags of -1 or 0 years (Fig. 7a,b), meaning that changes in removals lead changes in density by one year and they respond with a similar sign within year. Similarly, correlations were strong at lag -1 for predators and protected species (Fig. 7c, g), although neither were statistically significant and the latter correlation was negative and accompanied by a statistically significant correlation at lag 3 .

Flatfishes had a statistically negative correlation at lag -3 (Fig. 7d). Forage species had the best support for changes in density leading removals, with a statistically significant negative correlation at lag 1. Relationships were weaker and not statistically significant for rockfishes (Fig. 7e).

Patterns of cross-correlation of spatial autocorrelation were less clear than that of spatial CV , but the most prominent pattern was that changes in density led those of removals by 3 years (Fig. 8). Lag 3 correlations were high for all groups except protected species, and were positive for all species combined, fishes, predators, and forage species, while negative for flatfishes and rockfishes, yet the correlation was statistically significant only for the two broadest groups and forage species. Predators had greater correlation at lag 0 (negative) and rockfishes had greater correlation at lag 2 (positive). Correlations for protected species were greatest at lag 0 (positive) and lag -4 (negative), but the correlations were not statistically significant.

Discussion

Our results demonstrate that the spatial heterogeneity of demersal marine communities and associated fisheries is variable in time and responsive to changes in management regimes. We show that there is a strong relationship between spatial heterogeneity in fishery removals and spatial heterogeneity in a wide range of marine animal assemblages. Our result is particularly notable because fishing intensity was low compared to past levels within our system and relative to other demersal systems (Hilborn and Ovando, 2014; Hilborn et al., 2012); furthermore, choice of fishing location is driven substantially by fishers habits (Girardin et al., 2017; Holland and Sutinen, 2000; Kuriyama et al., In review) and distance from port or previous location, rather than expected revenue alone (Abbott et al., 2011; Haynie et al., 2009). Our finding that changes in spatial CV of removals lead those of density provides evidence of a direct top-down influence of fishing in a system considered to be driven largely by bottom-up dynamics (Field et al., 2006; Ware and Thomson, 2005). For the broadest assemblages, fishes and all fauna, trends in spatial CV among management regimes were fairly similar for removals and density in the trawled region, whereas patterns of spatial autocorrelation were less consistent. Changes in spatial heterogeneity of density in the untrawled region rarely bore any relationship to either density in the trawled region or removals, providing some additional support for fishing as a driver of change in density distributions.

Previous research identified fishery catch as an inconsistent ecological indicator of pressure, yet most of these analyses use only the magnitude of the landed catch (Shin et al., 2010), missing much of the consequences of fishing by not accounting for discarded bycatch and the spatial distribution of fishery removals. Here, we find that spatial heterogeneity of catch and discards combined appears to be an effective indicator of change in spatial distribution of marine faunal density, as reflected by the high leading correlation and within-year correlation of the
spatial CV of removals and fish density. However, the relationship varied among assemblages and in some cases it appeared that changes in the spatial field of removals-particularly the spatial autocorrelation of removals-lagged that of density, perhaps reflecting fishers moving to find fish. One interpretation is that changes in the scale of patchiness of density drives that of removals, in other words, bottom-up influences may be more noticeable at larger spatial scales. While we used the footprint of trawling effort to delineate our spatial strata (i.e., northern/trawled, southern/untrawled), management applications of spatial ecological indicators would likely require tailoring the selection of the number and position of strata based on the specific populations or fisheries of interest.

The notion that fishery removals at regional scales influence the distribution of fish biomass within fished areas is intuitive, yet many studies have not found such a relationship-or have found that the effects of fishing are small relative to environmental drivers. If removals are large enough relative to local biomass, surveys performed immediately before and after catch should detect the influence of fishing on faunal density, yet longer durations between sampling and removals allow for these direct effects to be obscured by animal movement, reproduction, growth and to a lesser extent natural mortality. Ono et al. (2016) used the same fisheryindependent survey data as that used in this study to evaluate causes of change in Dover sole (Microstomus pacificus) distribution and found no evidence of fishery influence between sampling periods of approximately 1-7 months, citing low exploitation rates for the lack of relationship. If low exploitation rates were the sole reason for this result, we should have also found no relationship between density and removals, as Dover sole are among the primary target species within our assemblages. That said, our results may not be as different as they appear on the surface, as we also found no correlation between flatfish removals and density at timescales
shorter than three years. There did appear to be some negative relationship at longer timescales, reflected in both the cross-correlation of spatial CV and opposing trends in spatial autocorrelation among management regimes. Some of this discrepancy could be due to the fact that Ono et al. (2016) relied on logbook data, which suffers from reporting error and inconsistent reporting of discards, issues addressed by our use of observer data. Furthermore, most flatfishes have greater rates of movement and faster life histories than reef-associated groundfishes such as rockfishes, so their population responses may generally make it more difficult to detect spatial influences of fishing.

While there were many similarities between spatial distributions of density and fishery removals, some notable differences highlight how policy drivers can cause removal patterns to deviate from what is expected under the ideal free distribution. The largest removals often came from somewhat deeper waters further off shore than the highest densities, particularly off northern California and Oregon, likely due in part to the closure of waters between 90 and 275 m depths to trawling coastwide (Fig. S3). Greater prevalence of rock outcrops in shallower shelf waters than deeper slope waters is also likely a factor, as footrope gear restrictions made it difficult and risky to trawl over rocky substrates, preventing the majority of trawling in such habitats (Bellman et al., 2005). As many of the later closures of essential fish habitat encompass rocky substrates, submarine canyons, or extend deeper than our study domain, it is difficult to say to what extent they contribute to discrepancies between distributions of removals and densities, but we found some evidence of large removals near the boundary of habitat and depth closures northward from the greater Monterey, California region (Fig. S3). While the adjacency of large removals and high density near closures is somewhat consistent with fishing-the-line and associated spillover effects (Halpern et al., 2009; Kellner et al., 2007; Murawski et al., 2004;

Stelzenmüller et al., 2008), such inference is beyond the scope of our study; furthermore, this pattern could be a reflection of trawlable habitat and fleet distribution rather than explicit effort or catch redistribution toward boundaries of fishery closures.

Spatial heterogeneity in fishery removals typically declined during the study period, which is counter to our expectation that policy changes would increase spatial heterogeneity of removals (particularly for groups with species targeted by the fishery). Perhaps habitat closures did not lead to increased spatial CV because fishers were already effectively prevented from trawling in these areas due to footrope restrictions implemented in 2000 (Bellman et al., 2005), or that closures did not lead to fishing-the-line behavior and instead spread effort over remaining habitat features in soft sediments (Barnett et al., 2017). This "filling-in" of fishing effort might explain the countertrend in spatial autocorrelation of removals, which did increase during the time period when habitat closures were implemented. The subsequent decline in spatial autocorrelation of removals coinciding with catch share implementation was not well explained by the distribution of trawl effort, which actually became more positively autocorrelated across this period (Kuriyama et al., In review). Decreasing patchiness of removals could have been the result of increasing fine-scale contrast in density (as observed in this study for all fishes), or increased targeting efficiency (Kuriyama et al., In review) likely related to nuanced changes in fisher behavior such as tow duration and time of day that coincided with catch shares implementation (Miller and Deacon, 2017).

Similar to patterns of removals, trends in spatial heterogeneity of density in the trawled region did not increase as we expected. Trends in spatial heterogeneity of density were either not statistically significant or inconsistent across assemblages. Spatial heterogeneity of some groups declined during the period when habitat closures began. This period also contained the only
years with a substantial increase in the number of hauls fleetwide, as effort generally declined over the study period (Fig. S1). Because fishing is thought to decrease spatial variation in density, declines in spatial CV of overall fish density during the habitat closure period could have been driven by increasing effort concentrated on a smaller amount of fishable habitat. Likewise, increased spatial heterogeneity of density in the following period of catch share management might have been caused by decreasing fleetwide effort. However, the changes in effort occurring over the study period are likely small relative to those over the history of the fishery (Hilborn et al., 2012). Decreases in density CV (of fishes) and autocorrelation (of flatfishes and forage species) could have also resulted from high rates of fish movement, densitydependent movement out of closures, or density-dependent population or individual growth, but this does not explain the subsequent increase in these metrics for fishes and flatfishes observed after catch shares. Other potential causes of the deviation between our expectations and results could be due to time lags in density responses or unknown factors regulating the effect of fishing on fuanal distributions (e.g., fisher foraging behavior or harvest control rules). Further, there could be a complex interaction between changes in spatial heterogeneity of the system and the pressure that we have yet to understand. Thus, the direct inference that spatial closures have mixed results and catch shares increase spatial heterogeneity of faunal density distributions and-by association-ecological stability, should be evaluated with caution.

Like many observational studies in fisheries science, the results of our study must be interpreted with some caveats. First, although we ascribe differences in density responses in the Southern California Bight and the rest of the study region to the presence of trawling, there are also differences in oceanography, coastal and seafloor topography, and species composition between the two subregions. Second, predictability of density and removals was low for the
forage and protected species groups as they are inherently patchily distributed and not well sampled by trawl gear. However, we contend that there is still value in including these groups to determine responses for species not targeted—or actively avoided-by the fishery. Third, we note that our use of multiple comparisons means it is likely that at least one test resulted in falsely rejecting the null hypothesis; however, one inappropriate inference would not change the broader conclusions of this study. Finally, we do not explicitly account for movement and density-dependent population responses, yet these factors might reduce our ability to explain relationships between patterns of removals and density.

Beyond the local direct effects of fishing, faunal distributions may be affected indirectly by reductions in population size, as evidenced by hyperstability or hyperdepletion in some fisheries (Rose and Kulka, 1999). However, such effects require high levels of contrast in population size that is rarely observed over the same period as extensive spatially-referenced sampling, and thus abundance-distribution relationships are not yet well understood for fishes (Shepherd and Litvak, 2004). Future work on how fishing affects species distributions would benefit from continuing and extending large-scale spatial monitoring efforts and experimental manipulations of at least moderate scale relative to the body size and dispersal ability of a given species.

We show how spatial indicators of fishery activity and faunal densities can be analyzed to monitor communities and assess ecosystem effects of fishing even in lightly exploited systems. Although our analytical framework revealed the relationship between distributions of fish and fishing that have proven elusive in other studies, the system did not always respond as expected to management changes. Understanding of how management and conservation actions modify the influence of fishing on metacommunities could be advanced by differentiating the general
effect of changing intensity of fishing from changing the spatial distribution of fishing. Defining how these dimensions of fishing influence distributions and how they scale with changes in faunal density and community composition will make spatial indicators of fishing a useful measure of ecosystem pressure to combine with spatial indicators of environmental drivers in advancing ecosystem-based fishery management. To apply spatial ecological indicators to management, further research would be required to evaluate appropriate scales of analysis based on factors specific to a system, such as the distribution, movement and demographic connectivity of species and the spatial distribution of their associated fisheries and oceanographic drivers of productivity. If one could find consistent relationships between fishing and spatial heterogeneity of density, they could quantify how fishing may be modify population and community stability beyond its potential influence on temporal variation of abundance (Ciannelli et al., 2013; Hsieh et al., 2008; Hsieh et al., 2006; Hsieh et al., 2010).

Acknowledgements

We thank the NWFSC observer analyst team for facilitating data access and assisting with interpretation (particularly Jon McVeigh and Kayleigh Somers, along with Kate Richerson for manuscript comments); NWFSC FRAM Fisheries Research Survey Team (Keith Bosley, John Buchanan, Mark Bradburn, Doug Draper, Melissa Head, John Harms, Aimee Keller, Dan Kamikawa, Victor Simon, and Vanessa Tuttle) and fishermen crew on the US West Coast Groundfish Bottom Trawl Survey; Jameal Samhouri for helpful discussions; and two anonymous reviewers for help in clarifying our points. This research was performed while LAKB held an NRC Research Associateship award at the NOAA Fisheries Northwest Fisheries Science Center. LAKB was supported by funding from the NOAA National Protected Species Toolbox Initiative, the NOAA Fisheries and the Environment (FATE) program, and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA15OAR 4320063.

References

Abbott, J.K., Wilen, J.E., Management, 2011. Dissecting the tragedy: a spatial model of behavior in the commons. J Environ Econ Manag 62, 386-401.

Abernethy, K.E., Allison, E.H., Molloy, P.P., Côté, I.M., 2007. Why do fishers fish where they fish? Using the ideal free distribution to understand the behaviour of artisanal reef fishers. Can J Fish Aquat Sci 64, 1595-1604.

Amoroso, R.O., Pitcher, C.R., Rijnsdorp, A.D., McConnaughey, R.A., Parma, A.M., Suuronen, P., Eigaard, O.R., Bastardie, F., Hintzen, N.T., Althaus, F., Baird, S.J., Black, J., BuhlMortensen, L., Campbell, A.B., Catarino, R., Collie, J., Cowan, J.H., Durholtz, D., Engstrom, N., Fairweather, T.P., Fock, H.O., Ford, R., Gálvez, P.A., Gerritsen, H., Góngora, M.E., González, J.A., Hiddink, J.G., Hughes, K.M., Intelmann, S.S., Jenkins, C., Jonsson, P., Kainge, P., Kangas, M., Kathena, J.N., Kavadas, S., Leslie, R.W., Lewis, S.G., Lundy, M., Makin, D., Martin, J., Mazor, T., Gonzalez-Mirelis, G., Newman, S.J., Papadopoulou, N., Posen, P.E., Rochester, W., Russo, T., Sala, A., Semmens, J.M., Silva, C., Tsolos, A., Vanelslander, B., Wakefield, C.B., Wood, B.A., Hilborn, R., Kaiser, M.J., Jennings, S., 2018. Bottom trawl fishing footprints on the world's continental shelves. Proceedings of the National Academy of Sciences 115, E10275-E10282.

Barnett, L.A.K., Baskett, M.L., 2015. Marine reserves can enhance ecological resilience. Ecol Lett 18, 1301-1310.

Barnett, L.A.K., Hennessey, S.M., Essington, T.E., Shelton, A.O., Feist, B.E., Branch, T.A., McClure, M.M., 2017. Getting to the bottom of fishery interactions with living habitats: spatiotemporal trends in disturbance of corals and sponges on the US West Coast. Mar Ecol Prog Ser 574, 29-47.

Baskett, M.L., Barnett, L.A.K., 2015. The ecological and evolutionary consequences of marine reserves. Annual Review of Ecology, Evolution, and Systematics 46, 49-73.

Baskett, M.L., Yoklavich, M., Love, M.S., 2006. Predation, competition, and the recovery of overexploited fish stocks in marine reserves. Can J Fish Aquat Sci 63, 1214-1229.

Bellman, M.A., Heppell, S.A., Goldfinger, C., 2005. Evaluation of a US West Coast groundfish habitat conservation regulation via analysis of spatial and temporal patterns of trawl fishing effort. Can J Fish Aquat Sci 62, 2886-2900.

Bjørnstad, O.N., Ims, R.A., Lambin, X., 1999. Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14, 427-432.

Bradburn, M.J., Keller, A.A., Horness, B.H., 2011. The 2003 to 2008 US West Coast bottom trawl surveys of groundfish resources off Washington, Oregon, and California: estimates of distribution, abundance, length, and age composition. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA.

Branch, T.A., 2009. How do individual transferable quotas affect marine ecosystems? Fish Fish 10, 39-57.

Breiman, L., 2001. Random forests. Machine Learning 45, 5-32.
Bruner, A.G., Gullison, R.E., Rice, R.E., Da Fonseca, G.A., 2001. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125-128.

Cadrin, S.X., Goethel, D.R., Morse, M.R., Fay, G., Kerr, L.A., 2018. "So, where do you come from?" The impact of assumed spatial population structure on estimates of recruitment. Fish Res.

Ciannelli, L., Fisher, J.A., Skern-Mauritzen, M., Hunsicker, M.E., Hidalgo, M., Frank, K.T., Bailey, K.M., 2013. Theory, consequences and evidence of eroding population spatial structure in harvested marine fishes: a review. Mar Ecol Prog Ser 480, 227-243.

Crowder, L., Norse, E., 2008. Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar Policy 32, 772-778.

Dulvy, N.K., Freckleton, R.P., Polunin, N.V.C., 2004. Coral reef cascades and the indirect effects of predator removal by exploitation. Ecol Lett 7, 410-416.

Errend, M.N., Pfeiffer, L., Steiner, E., Guldin, M., Warlick, A., 2018. Economic outcomes for harvesters under the West Coast Groundfish Trawl Catch Share Program: have goals and objectives been met? Coast Manag 46, 564-586.

Essington, T.E., Moriarty, P.E., Froehlich, H.E., Hodgson, E.E., Koehn, L.E., Oken, K.L., Siple, M.C., Stawitz, C.C., 2015. Fishing amplifies forage fish population collapses. Proceedings of the National Academy of Sciences 112, 6648-6652.

Fay, G., Large, S.I., Link, J.S., Gamble, R.J., 2013. Testing systemic fishing responses with ecosystem indicators. Ecol Modell 265, 45-55.

Field, J., Francis, R., Aydin, K., 2006. Top-down modeling and bottom-up dynamics: linking a fisheries-based ecosystem model with climate hypotheses in the Northern California Current. Prog Oceanogr 68, 238-270.

Field, J.C., Dick, E.J., MacCall, A.D., 2007. Stock assessment model for the shortbelly rockfish, Sebastes jordani, in the California Current. NOAA Tech Memo NMFS-SWFSC-405.

Fretwell, S.D., Lucas, H.L., 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 19, 16-36.

Fulton, E.A., Smith, A.D., Punt, A.E., 2005. Which ecological indicators can robustly detect effects of fishing? ICES J Mar Sci 62, 540-551.

Gillis, D.M., 2003. Ideal free distributions in fleet dynamics: a behavioral perspective on vessel movement in fisheries analysis. Can J Zool 81, 177-187.

Girardin, R., Hamon, K.G., Pinnegar, J., Poos, J.J., Thébaud, O., Tidd, A., Vermard, Y., Marchal, P., 2017. Thirty years of fleet dynamics modelling using discrete-choice models: what have we learned? 18, 638-655.

Halpern, B.S., Lester, S.E., Kellner, J.B., 2009. Spillover from marine reserves and the replenishment of fished stocks. Environ Conserv 36, 268-276.

Halpern, B.S., Warner, R.R., 2002. Marine reserves have rapid and lasting effects. Ecol Lett 5, 361-366.

Hassell, M., 2000. The spatial and temporal dynamics of host-parasitoid interactions. Oxford University Press, Oxford.

Hastings, A., Botsford, L.W., 1999. Equivalence in yield from marine reserves and traditional fisheries management. Science 284, 1537-1538.

Haynie, A.C., Hicks, R.L., Schnier, K.E., 2009. Common property, information, and cooperation: commercial fishing in the Bering Sea. Ecol Econ 69, 406-413.

Hilborn, R., Ovando, D., 2014. Reflections on the success of traditional fisheries management. ICES J Mar Sci 71, 1040-1046.

Hilborn, R., Stewart, I.J., Branch, T.A., Jensen, O.P., 2012. Defining trade-offs among conservation, profitability, and food security in the California Current bottom-trawl fishery. Conserv Biol 26, 257-266.

Hilborn, R., Stokes, K., Maguire, J.J., Smith, T., Botsford, L.W., Mangel, M., Orensanz, J., Parma, A., Rice, J., Bell, J., Cochrane, K.L., Garcia, S., Hall, S.J., Kirkwood, G.P., Sainsbury, K., Stefansson, G., Walters, C., 2004. When can marine reserves improve fisheries management? Ocean Coast Manag 47, 197-205.

Holland, D.S., Sutinen, J.G., 2000. Location choice in New England trawl fisheries: old habits die hard. Land Economics, 133-149.

Holling, C.S., 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst 4, 1-23.
Hsieh, C.-h., Reiss, C.S., Hewitt, R.P., Sugihara, G., 2008. Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Can J Fish Aquat Sci 65, 947-961.

Hsieh, C.-h., Reiss, C.S., Hunter, J.R., Beddington, J.R., May, R.M., Sugihara, G., 2006. Fishing elevates variability in the abundance of exploited species. Nature 443, 859-862.

Hsieh, C.-h., Yamauchi, A., Nakazawa, T., Wang, W.-F., 2010. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat Sci 72, 165-178.

Huffaker, C.B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27, 795-835.

Johnson, K.F., 2018. Multispecies methods to facilitate the transition from heuristics to statistics in ecosystem-based fisheries management. University of Washington, p. 192.

Kaiser, M.J., Collie, J.S., Hall, S.J., Jennings, S., Poiner, I.R., 2002. Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fish 3, 114-136.

Karnauskas, M., Huntington, B.E., Babcock, E.A., Lirman, D., 2011. Pre-existing spatial patterns in fish abundances influence species-specific responses in a Caribbean marine reserve. Mar Ecol Prog Ser 432, 235-246.

Katsanevakis, S., Stelzenmüller, V., South, A., Sørensen, T.K., Jones, P.J.S., Kerr, S., Badalamenti, F., Anagnostou, C., Breen, P., Chust, G., D'Anna, G., Duijn, M., Filatova, T., Fiorentino, F., Hulsman, H., Johnson, K., Karageorgis, A.P., Kröncke, I., Mirto, S., Pipitone, C., Portelli, S., Qiu, W., Reiss, H., Sakellariou, D., Salomidi, M., van Hoof, L., Vassilopoulou, V., Vega Fernández, T., Vöge, S., Weber, A., Zenetos, A., ter Hofstede, R., 2011. Ecosystem-based marine spatial management: Review of Concepts, Policies, Tools, and Critical Issues. Ocean Coast Manag 54, 807-820.

Kéfi, S., Guttal, V., Brock, W.A., Carpenter, S.R., Ellison, A.M., Livina, V.N., Seekell, D.A., Scheffer, M., van Nes, E.H., Dakos, V., 2014. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097.

Kellner, J.B., Nisbet, R.M., Gaines, S.D., 2008. Spillover from marine reserves related to mechanisms of population regulation. Theoretical Ecology 1, 117-127.

Kellner, J.B., Tetreault, I., Gaines, S.D., Nisbet, R.M., 2007. Fishing the line near marine reserves in single and multispecies fisheries. Ecol Appl 17, 1039-1054.

Kinlan, B.P., Gaines, S.D., 2003. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007-2020.

Kuriyama, P.T., Holland, D., Barnett, L., Branch, T., Hicks, R., Schnier, K., 2019. Catch shares drive consolidation, spatial concentration, increased targeting, and subtle behavioral changes in a North American multispecies trawl fishery. Can J Fish Aquat Sci 0, 0.

Lester, S.E., Halpern, B.S., Grorud-Colvert, K., Lubchenco, J., Ruttenberg, B.I., Gaines, S.D., Airamé, S., Warner, R.R., 2009. Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 384, 33-46.

Link, J.S., 2005. Translating ecosystem indicators into decision criteria. ICES J Mar Sci 62, 569576.

Miller, S.J., Deacon, R.T., 2017. Protecting marine ecosystems: regulation versus market incentives. Marine Resource Economics 32, 83-107.

Mills, K., Laidig, T., Ralston, S., Sydeman, W., 2007. Diets of top predators indicate pelagic juvenile rockfish (Sebastes spp.) abundance in the California Current System. Fish Oceanogr 16, 273-283.

Moffitt, E.A., Botsford, L.W., Kaplan, D.M., O'Farrell, M.R., 2009. Marine reserve networks for species that move within a home range. Ecol Appl 19, 1835-1847.

Murawski, S., Rago, P., Fogarty, M., 2004. Spillover effects from temperate marine protected areas, in: Shipley, J.B. (Ed.), Aquatic Protected Areas as Fisheries Management Tools, pp. 167-184.

Noss, R.F., 1983. A regional landscape approach to maintain diversity. Bioscience 33, 700-706.
Ono, K., Shelton, A.O., Ward, E.J., Thorson, J.T., Feist, B.E., Hilborn, R., 2016. Space-time investigation of the effects of fishing on fish populations. Ecol Appl 26, 392-406.

PFMC, 2008. Pacific Coast Groundfish Fishery Management Plan for the California, Oregon, and Washington groundfish fishery as amended through Amendment 19 (including Amendment 15). Pacific Fishery Management Council. Portland, OR.

PFMC, NMFS, 2017. West Coast Groundfish Trawl Catch Share Program: five-year review, Approved by the Pacific Fishery Management Council November 16th 2017, Costa Mesa, CA.

Punt, A.E., 2019. Spatial stock assessment methods: A viewpoint on current issues and assumptions. Fish Res 213, 132-143.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rassweiler, A., Costello, C., Siegel, D.A., 2012. Marine protected areas and the value of spatially optimized fishery management. Proc Natl Acad Sci U S A 109, 11884-11889.

Rooker, J.R., Kitchens, L.L., Dance, M.A., Wells, R.J.D., Falterman, B., Cornic, M., 2013. Spatial, temporal, and habitat-related variation in abundance of pelagic fishes in the Gulf of Mexico: potential implications of the deepwater horizon oil spill. PLoS ONE 8, e76080-e76080.

Rose, G.A., Kulka, D.W., 1999. Hyperaggregation of fish and fisheries: how catch-per-uniteffort increased as the northern cod (Gadus morhua) declined. Can J Fish Aquat Sci 56, 118-127.

Rouyer, T., Fromentin, J.M., Ménard, F., Cazelles, B., Briand, K., Pianet, R., Planque, B., Stenseth, N.C., 2008. Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. Proceedings of the National Academy of Sciences 105, 5420-5425.

Samhouri, J.F., Levin, P.S., Harvey, C.J., 2009. Quantitative evaluation of marine ecosystem indicator performance using food web models. Ecosystems 12, 1283-1298.

Sanchirico, J.N., Wilen, J.E., 1999. Bioeconomics of spatial exploitation in a patchy environment. J Environ Econ Manag 37, 129-150.

Sanchirico, J.N., Wilen, J.E., 2005. Optimal spatial management of renewable resources: matching policy scope to ecosystem scale. J Environ Econ Manag 50, 23-46.

Shepherd, T.D., Litvak, M.K., 2004. Density-dependent habitat selection and the ideal free distribution in marine fish spatial dynamics: considerations and cautions. Fish Fish 5, 141-152.

Shin, Y.-J., Shannon, L.J., Bundy, A., Coll, M., Aydin, K., Bez, N., Blanchard, J.L., Borges, M.d.F., Diallo, I., Diaz, E., 2010. Using indicators for evaluating, comparing, and communicating the ecological status of exploited marine ecosystems. 2. Setting the scene. ICES J Mar Sci 67, 692-716.

Stelzenmüller, V., Maynou, F., Bernard, G., Cadiou, G., Camilleri, M., Crec'hriou, R., Criquet, G., Dimech, M., Esparza, O., Higgins, R., Lenfant, P., Pérez-Ruzafa, Á., 2008. Spatial assessment of fishing effort around European marine reserves: implications for successful fisheries management. Mar Pollut Bull 56, 2018-2026.

Stewart, K.R., Lewison, R.L., Dunn, D.C., Bjorkland, R.H., Kelez, S., Halpin, P.N., Crowder, L.B., 2010. Characterizing fishing effort and spatial extent of coastal fisheries. PLoS ONE 5, e14451-e14451.

Stock, B.C., Ward, E.J., Thorson, J.T., Jannot, J.E., Semmens, B.X., 2018. The utility of spatial model-based estimators of unobserved bycatch. ICES J Mar Sci 76, 255-267.

Strathmann, R.R., 1990. Why life histories evolve differently in the sea. Amer. Zool. 30:197207.

Sydeman, W.J., Hester, M.M., Thayer, J.A., Gress, F., Martin, P., Buffa, J., 2001. Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969-1997. Prog Oceanogr 49, 309-329.

Takashina, N., Mougi, A., 2014. Effects of marine protected areas on overfished fishing stocks with multiple stable states. J Theor Biol 341, 64-70.

Tam, J.C., Link, J.S., Rossberg, A.G., Rogers, S.I., Levin, P.S., Rochet, M.-J., Bundy, A., Belgrano, A., Libralato, S., Tomczak, M., 2017. Towards ecosystem-based management: identifying operational food-web indicators for marine ecosystems. ICES J Mar Sci, fsw230.

Thorson, J.T., Pinsky, M.L., Ward, E.J., 2016. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods in Ecology and Evolution 7, 990-1002.

Tilman, D., Kareiva, P.M., 1997. Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press.

Tolimieri, N., Shelton, A.O., Feist, B.E., Simon, V., 2015. Can we increase our confidence about the locations of biodiversity 'hotspots' by using multiple diversity indices? Ecosphere 6, 1-13.

Turner, M.G., 1989. Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20, 171-197.

Turner, M.G., Arthaud, G.J., Engstrom, R.T., Hejl, S.J., Liu, J., Loeb, S., McKelvey, K., 1995. Usefulness of spatially explicit population models in land management. Ecol Appl 5, 1216.

Ware, D.M., Thomson, R.E., 2005. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308, 1280-1284.

Watling, L., Norse, E.A., 1998. Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv Biol 12, 1180-1197.

Watson, J.T., Haynie, A.C., Sullivan, P.J., Perruso, L., O'Farrell, S., Sanchirico, J.N., Mueter, F.J., 2018. Vessel monitoring systems (VMS) reveal an increase in fishing efficiency following regulatory changes in a demersal longline fishery. Fish Res 207, 85-94.

White, C., Kendall, B.E., 2007. A reassessment of equivalence in yield from marine reserves and traditional fisheries managament. Oikos 116, 2039-2043.

White, J.W., Botsford, L.W., Baskett, M.L., Barnett, L.A.K., Barr, R.J., Hastings, A., 2011. Linking models with monitoring data for assessing performance of no-take marine reserves. Front Ecol Environ 9, 390-399.

White, J.W., Botsford, L.W., Hastings, A., Largier, J.L., 2010. Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar Ecol Prog Ser 398, 49-67.

Wood, L.J., Fish, L., Laughren, J., Pauly, D., 2008. Assessing progress towards global marine protection targets: shortfalls in information and action. Oryx 42, 340-351.

Ying, Y., Chen, Y., Lin, L., Gao, T., 2011. Risks of ignoring fish population spatial structure in fisheries management. Can J Fish Aquat Sci 68, 2101-2120.

Title: How do ecological resilience metrics relate to community stability and collapse?

Caleb P. Roberts ${ }^{1,2 *}$, Dirac Twidwell ${ }^{1}$, David G. Angeler ${ }^{3}$, Craig R. Allen ${ }^{2}$

${ }^{1}$ Department of Agronomy \& Horticulture, University of Nebraska, Lincoln, NE, USA
${ }^{2}$ Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Nebraska, Lincoln, NE, USA
${ }^{3}$ School of Natural Resources, University of Nebraska, Lincoln, NE, USA
*corresponding author: caleb.powell.roberts@ gmail.com

Abstract

The concept of ecological resilience (the amount of disturbance a system can absorb before collapsing and reorganizing) holds potential for predicting community change and collapse-increasingly common issues in the Anthropocene. Yet neither the predictions nor metrics of resilience have received rigorous testing. The cross-scale resilience model, a leading operationalization of resilience, proposes resilience can be quantified by the combination of diversity and redundancy of functions performed by species operating at different scales. Here, we use 48 years of sub-continental avian community data aggregated at multiple spatial scales to calculate resilience metrics derived from the cross-scale resilience model (i.e., cross-scale diversity, cross-scale redundancy, within-scale redundancy, and number of body mass aggregations) and test core predictions inherent to community persistence and change. Specifically, we ask how cross-scale resilience metrics relate community stability and collapse. We found low mean cross-correlation between species richness and cross-scale resilience metrics. Resilience metrics constrained the magnitude of community fluctuations over time (mean species turnover), but resilience metrics but did not influence variability of community fluctuations (variance in turnover). We show shifts in resilience metrics closely predict community collapse: shifts in cross-scale redundancy preceded abrupt changes in community composition, and shifts in cross-scale diversity synchronized with abrupt changes in community composition. However, we found resilience metrics only weakly relate to maintenance of particular species assemblages over time. Our results distinguish ecological resilience from ecological stability and allied concepts such as elasticity and resistance: we show communities may fluctuate widely yet still be resilient. Our findings also differentiate the roles of functional redundancy and diversity as metrics of resilience and reemphasize the importance of considering

resilience metrics from a multivariate perspective. Finally, we support the contention that ecological stability is nested within ecological resilience: stability predicts the behavior of systems within an ecological regime, and resilience predicts the maintenance of regimes and behavior of systems collapsing into alternative regimes.

Key Words

Resilience, cross-scale resilience model, elasticity, functional diversity, functional redundancy, regime shift, species richness, stability, turnover

INTRODUCTION

"If there is a worthwhile distinction between resilience and stability it is important that both be measurable." - C. S. Holling, 1973

As the Anthropocene progresses, community change and collapse are increasingly common (Folke et al., 2004; Steffen et al., 2015). The concept of ecological resilience, defined by C. S. Holling (1973) as the amount of disturbance a system can absorb before collapsing into an alternative regime, holds potential for predicting community change and collapse (Angeler \& Allen, 2016). Quantifying ecological resilience has been a long-term pursuit in ecology (Carpenter, Westley, \& Turner, 2005; Cumming et al., 2005; Standish et al., 2014), ecological resilience has been applied internationally in management frameworks (Briske et al., 2008; Bestlemeyer et al., 2017; Seidl et al., 2016), and multiple ecological resilience metrics have been proposed (Allen et al., 2005; Baho et al., 2017). Yet neither the core predictions nor metrics of ecological resilience theory have received rigorous testing (Angeler and Allen, 2016; Sundstrom et al., 2018).

Ecological resilience theory makes key predictions concerning complex, nonlinear, and abruptly shifting system behavior, making it uniquely applicable to Anthropocene issues (L. H. Gunderson, 2000). Ecological resilience is related to, but distinct from, ecological stability (the ability of a system to return to an equilibrium state post-disturbance-also known as "engineering resilience," "bounce-back time," "resistance,", and "elasticity"; C. S. Holling, 1973; Hillebrand et al., 2018; Pimm, 1984). This is a crucial distinction because while ecological resilience makes predictions concerning abrupt regime shifts into alternative states, ecological stability only makes predictions concerning a single regime (Angeler and Allen, 2016).

Ecological resilience theory predicts that a system may fluctuate greatly (have low stability and exhibit non-equilibrium behavior) and yet have high ecological resilience or conversely fluctuate little and have low ecological resilience (Angeler \& Allen, 2016; C. S. Holling, 1973). That is, a resilient system will constrain the magnitude of fluctuations so that the system stays within a given regime, but the same resilient system may exhibit high instability within the regime (L. H. Gunderson, Allen, \& Holling, 2012). By definition, loss of ecological resilience increases the likelihood of system collapse and regime shifts due to loss of structures, functions, and feedbacks that maintain the current regime (Allen, Gunderson, \& Johnson, 2005). Thus, ecological resilience should be both quantifiably distinct from stability and clearly correspond with community change and collapse (C. S. Holling, 1973; Standish et al., 2014).

The cross-scale resilience model, a leading model for operationalizing and quantifying ecological resilience (hereafter referred to simply as "resilience"), provides the opportunity to test these core predictions of resilience theory (G. Peterson et al., 1998; S. M. Sundstrom et al., 2018). The cross-scale resilience model establishes that redundancy and diversity of organism functions across discontinuous scale domains of resource use in a system confer resilience (C. S. Holling, 1992; G. Peterson et al., 1998; Figure 1). Quantifying redundancy and diversity of functions across these discontinuous scale domains can produce metrics to estimate the relative resilience of systems (Bouska, 2018, Sundstrom et al., 2018; Angeler et al., 2019a). For example, Allen et al. (2005) proposed several cross-scale resilience metrics such as within-scale redundancy, cross-scale redundancy, cross-scale diversity, and number of scale domains.

Here, we use a half-century of sub-continental avian community data to calculate crossscale resilience metrics and test how resilience relates to community stability and collapse. We do this by testing two core resilience theory predictions concerning its relationship with stability
and two concerning its relationship with community change and collapse. The first resiliencestability relationship prediction is that resilience is distinct from stability: we test this by quantifying the degree of correlation between species richness and cross-scale resilience metrics. Although species richness is not a direct metric of stability, it is correlated with stability and influences the ability of a system to "bounce back" from disturbances (Hautier et al., 2015; Ives \& Carpenter, 2007; McCann, 2000; Mougi \& Kondoh, 2012; Tilman \& Downing, 1994). The second resilience-stability relationship prediction is that resilience will constrain the magnitude of system fluctuations but not their variability: we test this by determining the relationship between cross-scale resilience metrics and the mean and variance of annual species turnover. In this case, cross-scale diversity is expected to reduce mean turnover the most, and all resilience metrics should have little influence on turnover variance (Allen et al., 2005; Angeler et al., 2019a). The first resilience-collapse relationship prediction is that changes in cross-scale resilience metrics will predict community collapse: we test this by determining if changes in cross-scale resilience metrics synchronize with abrupt shifts in community composition. Withinscale redundancy, cross-scale redundancy, and number of scale domains are expected to most strongly predict community collapse (Nash et al., 2016; Roberts et al., 2019; Spanbauer et al., 2016). Finally, the second resilience-collapse prediction is cross-scale resilience metrics will only weakly predict maintenance of specific species assemblages: we test this by determining how cross-scale resilience metrics relate to changes in community similarity over time (L. H. Gunderson, 2000; Angeler et al., 2019b).

METHODS

Calculating cross-scale resilience metrics

Cross-scale resilience metrics are calculated by first identifying a biotic community within a system (e.g., an avian forest community) and acquiring census presence/absence data from the biotic community (Allen et al., 2005), identifying the discontinuous scale domains at which functions are performed by each species in the biotic community (Nash et al., 2014a, b), and finally using functional traits of species across scale domains to estimate functional redundancy and diversity within and across scale domains (Fischer et al., 2007).

Identifying biotic communities

For biotic community data, we used the North American Breeding Bird Survey (BBS) which estimates bird community composition via yearly roadside avian point-count surveys (Sauer et al., 2013). Begun in 1966, the BBS is conducted along a series of >2500 permanent, randomly-distributed routes during the breeding season (Sauer et al., 2013). We analyzed BBS route data from 1967-2014.

We defined avian communities by spatially binning BBS routes according to US Environmental Protection Agency (EPA) ecoregions (Omernik \& Griffith, 2014; Figure 2). These ecoregions are spatially hierarchical, meaning that finer-scaled ecoregions are bounded by and nested within larger-scaled ecoregions. Because smaller-scale EPA ecoregion boundaries are bounded by US political boundaries, we only consider BBS routes within the continental United States. We considered avian communities at the three progressively smaller spatial scales (EPA ecoregion levels II, III, IV; Figure 2). If binned BBS data within an ecoregion did not extend for
≥ 24 years (i.e., $\geq 50 \%$ of the study period), we excluded that ecoregion from analysis (Table S1; see supplementary computer code for further details).

Identifying discontinuous scale domains

We performed discontinuity analysis on binned BBS data for each ecoregion at each scale using the "discontinuity detector" method (Barichievy et al., 2018) based on the Gap Rarity Index which identifies scale domains by detecting discontinuities in log-ranked organism body masses (Restrepo et al., 1997). For taxa with determinant growth, mean body mass reliably differentiates size aggregations and is strongly allometric to the scale domains at which functions are carried out by organisms (Allen et al., 2006; C. S. Holling, 1992; Nash et al., 2014b). Because of known negative observation biases for waterfowl and allied families and because water-dwelling avian families' follow different body masses patterns than terrestrial avian families, we removed all species from the Anseriformes, Gaviiformes, Gruiformes, Pelecaniformes, Phaethontiformes, Phoenicopteriformes, Podicipediformes, Procellariiformes, and Suliformes families from the analysis (C. S. Holling, 1992; S. M. Sundstrom, Allen, \& Barichievy, 2012). We obtained mean body mass estimates for all remaining species from the CRC Handbook of Avian Body Masses (Dunning Jr, 2007). Because Gap Rarity Index tends to overestimate discontinuities in species-poor samples, we removed any route with < 40 species observed (Barichievy et al., 2018; Stow, Allen, \& Garmestani, 2007). We simply counted the number of body mass aggregations to obtain that metric.

Estimating within- and cross-scale functional redundancy, cross-scale diversity
We assigned functional types to each species according to diet and foraging strategies (Ehrlich, Dobkin, \& Wheye, 1988). We broke diets into carnivore, herbivore, and omnivore groups, where omnivores are defined as species with approximately even proportions of plant and animal intake (Bouska, 2018). We divided foraging strategies into five groups: water, ground, foliage, bark, and air (S. M. Sundstrom et al., 2012). Thus, functional groups represented combinations of diet and foraging strategies (e.g., water carnivore, ground herbivore, etc.).

We then used functional groups along with body mass aggregations to calculate crossscale redundancy (average number of aggregations for which each functional group has at least one representative), within-scale redundancy (the average number of representatives from each functional group within each aggregation), and cross-scale diversity (the average diversity of functional groups across aggregations) metrics for each ecoregion within each of the three spatial scales (Figure 2). The equations for these are as follows:

$$
\text { Cross }- \text { scale Redundancy }=\frac{1}{a} \sum_{i=1}^{a}(\varphi)_{i}
$$

Within - scale Redundancy $=\frac{1}{a} \sum_{i=1}^{a}\left(\frac{1}{f} \sum_{j=1}^{f} f_{j}\right)_{i}$

$$
\text { Cross }- \text { scale Diversity }=\frac{1}{a} \sum_{i=1}^{a}\left(-\sum_{j=1}^{f} p_{j} \ln p_{j}\right)_{i}
$$

Where a is the number of body mass aggregations, φ is the number of functional groups with at least one representative in an aggregation, f is the $j^{\text {th }}$ functional group, and p is the $j^{\text {th }}$ species in each aggregation.

Resilience-Stability Test 1: Relationship between cross-scale resilience and richness

We used cross-correlation to compare species richness with each cross-scale resilience metric (number of body mass aggregations, cross-scale redundancy, within-scale redundancy, cross-scale diversity) for each ecoregion across -5 to 5 lags. That is, we used cross-correlation to quantify temporal covariance of richness and resilience metrics, determining if patterns of resilience metrics preceded (back to 5 time steps before) or followed (forward to 5 time steps after) patterns of richness. For each lag, we calculated the mean and 85% confidence intervals of the absolute values of correlation coefficients across ecoregions.

Resilience-Stability Test 2: Relationship between cross-scale resilience and turnover

Second, we determined the relationship between cross-scale resilience metrics and species turnover. We calculated relative species turnover (the proportion of the species pool that turns over annually) using the following equation (Diamond, 1969; Wonkka, West, Twidwell, \& Rogers, 2017):

Turnover $_{t+l}=\left(\mathrm{U}_{t}+\mathrm{U}_{t+1}\right) /\left(\mathrm{S}_{t}+\mathrm{S}_{t+1}\right)$
where U_{t} is the number of species present in the ecoregion at year t that were not present in year t $+1 ; \mathrm{U}_{t+l}$ is the number of species present in the ecoregion at year $t+1$ that were not present in
year $t ; \mathrm{S}_{t}$ is the total number of species present in the ecoregion at year t; and S_{t+l} is the total number of species present in the ecoregion at year $t+1$.

We then developed two linear mixed models: 1) to determine if resilience metrics influenced the magnitude of species turnover, we used the mean of the absolute value of species turnover over time as the response variable, and 2) to determine if resilience metrics influenced the variability of species turnover, we used the standard deviation of species turnover over time as the response variable. For both models, we set mean resilience metrics over time as the predictor variables. We allowed intercepts to vary by hierarchically nested EPA ecoregions (e.g., for level III ecoregions, random effect in R package "lme4" syntax was "(1 | Level I / Level II)"). To minimize collinearity, we calculated variance inflation factors and sequentially removed predictor variables (resilience metrics) with the highest variance inflation factor until variance inflation factor values for all variables were ≤ 3.

Resilience-Collapse Test 1: Relationship between cross-scale resilience and abrupt shifts

We determined whether significant temporal shifts in cross-scale resilience metrics synchronized with abrupt shifts in community composition. To identify abrupt shifts in community composition, we 1) performed detrended correspondence analysis (DCA; "decorana" function from the vegan package in R) on Hellinger-transformed relative abundances of species in each ecoregion over time, 2) extracted values of the first DCA axis (DCA1) for each year, 3) used generalized additive models (GAMs) to model changes in DCA1 over time (with year as the smoothed predictor) for each ecoregion, 4) extracted predicted DCA1 response values from GAMs for each ecoregion (Figure 3a), and 5) determined where community structure significantly changed by first calculating derivatives and 85% confidence limits around the
derivatives from the GAM predictions and then locating ranges in the time series where derivative confidence limits did not encompass zero (Simpson, 2018; Figure 3b). We located shifts in cross-scale resilience metrics in a similar fashion-by extracting GAM predictions, calculating derivatives and confidence intervals, and locating ranges where confidence limits did not encompass zero (Figure 3b). To test for synchrony between cross-scale resilience metrics and structural community change, we encoded DCA1 and resilience metric time series as binary variables, where either a significant shift (85% confidence limit of derivative did not encompass zero) occurred or did not for each time step (i.e., each year of BBS data; Figure 3c). We aggregated significant increases and decreases into an absolute value because both significant increases and decreases in ordinated values (e.g., DCA) or resilience metrics, regardless of directionality, could signal regime shifts. We set the binary DCA1 variable as the response and binary resilience metrics predictors in a binomial generalized linear mixed model. We checked for collinearity with variance inflation factors.

Resilience-Collapse Test 2: Relationship between cross-scale resilience and community similarity

We determined the relationship between cross-scale resilience metrics and patterns of community similarity over time. We estimated community similarity over time via the Jaccard index. That is, we calculated Jaccard similarity between each year of BBS data for each ecoregion and then used linear regression to estimate change in community identity over time (i.e., slope; sensu Dornelas et al., 2014). Because the Jaccard index ranges from 0 (complete dissimilarity in species) to 1 (complete similarity in species), a slope of zero indicates no change in community composition over time, and a slope of -1 indicates a complete change in species
pool. We then developed linear mixed models, setting the slope of the Jaccard index as the response variable. For predictor variables, we used initial resilience metric values (the chronologically first value for each resilience metric for each ecoregion) and mean resilience metric values (the average of each resilience metric value across the time series for each ecoregion). To account for variance in certainty of Jaccard slope fits, we used 1 / standard error of each Jaccard slope fit as prior weights for linear mixed models. We used the methods from Test 2 for minimizing collinearity as above (i.e., sequential removal of predictor variables via variance inflation factors).

RESULTS

Resilience-Stability Test 1: Relationship between cross-scale resilience and richness

Mean cross-correlation between richness and resilience metrics was low across scales and individual metrics, ranging from $r=0.16 \pm 0.01$ (cross-scale redundancy at lag -5 at the finest scale) to $\mathrm{r}=0.63 \pm 0.02$ (cross-scale diversity at lag 0 at the finest scale; Figure 4). Patterns were consistent across scales: the strongest correlation between richness and all metrics at all scales occurred at lag zero (annually) after which correlations decreased sharply (Figure 4). At the broadest scale (level II), confidence limits show little difference between individual metrics' correlations with richness (Figure 4). At the finer scales (levels III, IV), cross-scale diversity correlated most strongly with richness (Figure 4). Within-scale redundancy showed the second greatest correlation with richness (max $r=0.50 \pm 0.02$ at level IV, lag 0; Figure 4). Cross-scale redundancy $(\mathrm{r}=0.34 \pm 0.02$ at lag 0$)$ and number of aggregations $(0.29 \pm 0.02$ at lag 0$)$ displayed the weakest correlation with richness at finer scales (Figure 4).

Resilience-Stability Test 2: Relationship between cross-scale resilience and turnover

Resilience metrics had significantly negative relationships with mean annual species turnover at all scales, but resilience metrics showed little or no association with standard deviation of annual species turnover (Figure 5; Table S1). Cross-scale diversity was a significant predictor of mean species turnover at the broadest scale and the strongest predictor at the finest scale $(-0.027 \pm 0.001$ and -0.034 ± 0.002 at levels II and IV respectively), and cross-scale diversity was a significant negative predictor of standard deviation in species turnover at the finest scale (-0.004 ± 0.002). Cross-scale redundancy was a significant predictor at all scales, although its strength decreased at finer scales until it was the weakest predictor at the finest scale $(-0.018 \pm 0.011,-0.015 \pm 0.001$, and -0.0059 ± 0.004 at ecoregion levels II, III, and IV respectively). Cross-scale redundancy also significantly negatively predicted standard deviation in species turnover at the finest scale (-0.005 ± 0.003). Within-scale redundancy was a significant predictor at the middle scale (-0.017 ± 0.006), and number of aggregations was a significant predictor of middling strength at the finest scale (-0.018 ± 0.004).

Resilience-Collapse Test 1: Relationship between cross-scale resilience and abrupt shifts

At all scales, resilience metrics synchronized significantly with abrupt community shifts (Figures 3, 4; Table S3). At the broadest scale (level II), cross-scale diversity (1.0 ± 0.53) and cross-scale redundancy (0.67 ± 0.55) synchronized with community change (Figure 4$)$. At the middle scale (level III), number of aggregations (0.21 ± 0.20) and within-scale redundancy (0.62 ± 0.20) exhibited synchrony with community change (Figure 3), but cross-scale redundancy exhibited asynchrony (i.e., a negative model coefficient; -0.3 ± 0.19) with community change (Figures 3, 4). And at the finest scale (level IV), all resilience metrics synchronized with abrupt
community shifts: cross-scale diversity showed the strongest synchrony (0.58 ± 0.08; Figure 3), and number of aggregations showed the weakest synchrony (0.11 ± 0.09).

Resilience-Collapse Test 2: Relationship between cross-scale resilience and community similarity

At the broadest and middle scales (levels II, III), neither initial nor mean resilience metric values significantly predicted changes in community similarity over time (Table S2). But at the finest scale (level IV), initial values of cross-scale diversity (0.0002 ± 0.0001) and number of aggregations (0.0002 ± 0.0001) significantly, albeit weakly, predicted reduced community change (i.e., pushed Jaccard slopes closer to zero-no net community change; Table S2).

DISCUSSION

Using a half-century of subcontinental community data, we provide quantitative support for core predictions of ecological resilience theory regarding how ecological resilience relates to ecological stability and collapse. Per Holling's call in his seminal manuscript on resilience theory (C. S. Holling, 1973), we found resilience is related to but distinct from stability. Importantly, our results distinguish ecological resilience from concepts allied with stability such as engineering resilience, "bounce-back" time to equilibrium, resistance, and elasticity (L. H. Gunderson, 2000; Pimm, 1984; Standish et al., 2014). We also show that shifts in cross-scale resilience metrics clearly predict and coincide with abrupt community shifts, but at the same time, resilience is weakly related to community change in terms of maintenance of a particular species assemblages over time. We also provide interpretability for cross-scale resilience metrics: we distinguish the roles of functional redundancy and diversity metrics of community
collapse and community similarity, respectively (G. Peterson et al., 1998; Walker, Kinzig, \& Langridge, 1999), and we show number of aggregations (i.e., scale domains) may be an unresponsive metric if systems reorganize around similar numbers of scale domains during and post-collapse, meaning this metric may only detect extreme collapse events (Angeler et al., 2019b; Roberts et al., 2019).

Our results reaffirm the importance of avoiding the conflation of ecological resilience and ecological stability. Stability theory predicts a particular community composition (e.g., higher species richness) will reduce variance in system functionality but makes no assertions concerning alternative states (Allan et al., 2011; Cardinale et al., 2013; Tilman, 1996; Wagg et al., 2018). Additionally, stability typically does not consider ecological complexity features, such as spatial and temporal scaling structures or thresholds (Baho et al., 2017; Hillebrand et al., 2018). In contrast, resilience theory predicts resilient systems may exhibit wide ranges of variance, community composition will be dynamic and adaptive, and scaling patterns of functional redundancy and diversity within communities (instead of particular community compositions) will determine the ability of a system to remain within one of multiple alternative regimes (Allen, Angeler, Garmestani, Gunderson, \& Holling, 2014; Angeler et al., 2019a; Chillo, Anand, \& Ojeda, 2011; S. M. Sundstrom et al., 2018). Our results support these differences between stability and resilience: resilience metrics had low degrees of correlation with species richness, a metric that is closely correlated to stability and the ability of a system to "bounce back" from disturbances (Hautier et al., 2015; Ives \& Carpenter, 2007; McCann, 2000; Mougi \& Kondoh, 2012; Tilman \& Downing, 1994). That is, greater richness did not necessarily beget greater resilience. This finding contrasts with a pervasive conflation of richness and resilience (Bellwood \& Hughes, 2001; J. Fischer et al., 2007; Oliver et al., 2015; Standish et al., 2014). As
expected, cross-scale diversity exhibited the highest correlation with richness, although its correlation was much less than typical cutoffs for collinearity. Cross-scale resilience metrics also did not predict variability in community composition (standard deviation in species turnover) except weakly at the finest scale. This supports the resilience theory prediction that systems may have low stability (high variance in species turnover) but high resilience (Holling, 1973). Our results also support the contention that the concept of ecological stability is nested within ecological resilience: resilience metrics constrained the magnitude of temporal community fluctuations (mean species turnover) but only weakly predicted variability in community fluctuations-which is the purview of stability theory (Angeler and Allen, 2016; Hautier et al., 2015; Mougi \& Kondoh, 2012).

Similarly, resilience theory predicts systems with higher resilience will be more likely to retain similar structures and functions over time, but unlike stability, resilience theory makes few predictions on the maintenance of a particular species assemblage (Allen \& Holling, 2010; Bellwood \& Hughes, 2001; L. H. Gunderson, 2000). Our results support this premise. Crossscale resilience metrics were not strongly associated with maintenance of a particular group of species. Instead, resilience metrics predicted maintenance of overall community structure per their synchrony with abrupt community shifts across scales. That is, resilience metrics predict significant abrupt community shifts but not community similarity over time (Angeler et al., 2019b). However, higher resilience metrics did weakly predict maintenance of community composition over time as well as constraining mean species turnover which still supports a connection between species composition and resilience.

The cross-scale resilience model differentiates the roles of functional redundancy and functional diversity, and we corroborate this (Bellwood \& Hughes, 2001; Elmqvist et al., 2003;

