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Abstract 19 

 The spatial structure and dynamics of populations, their environment, interacting species, 20 

and anthropogenic stressors influences community stability and ecological resilience. Despite the 21 

importance of spatial processes in ecological outcomes and increasing desire to implement 22 

ecosystem-based management, fine-scale spatial dynamics have been rarely incorporated in 23 

marine fisheries management. However, advances in population modeling and data availability 24 

provide the necessary ingredients to address this disconnect between the fields of ecology and 25 

fisheries. We used random forests and spatial indices to quantify spatial heterogeneity and 26 

dynamics of US west coast demersal marine faunal density (biomass of a community or 27 

assemblage per unit area) and the total removals (catches plus discards) from the system by the 28 

groundfish bottom trawl fishery from 2002 to 2017. We expected spatial heterogeneity of 29 

removals and density to increase following implementation of depth and habitat closures--due to 30 

proximally increasing density gradients and fishing-the-line--and following catch shares because 31 

of fleet consolidation and behavioral consequences of eliminating the race to fish. However, we 32 

found mixed responses, where at the broadest community levels spatial variation in removals and 33 

density declined with habitat closures, while spatial autocorrelation of removals increased with 34 

habitat closures and declined with catch shares. Our results reveal a complex interdependence 35 

between spatial distributions of faunal density and fishery removals that has been absent in 36 

previous studies focusing on catch only, and shows how these patterns are shaped by marine 37 

policy. The spatial variation of density and removals were positively correlated within year (i.e., 38 

each responded with the same sign and timescale), while there was also evidence that interannual 39 

changes in the spatial variation of removals among years led those of density by one year (i.e., 40 

increases in patchiness of removals were followed by increased patchiness of density). These 41 
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results hint at the presence of a stronger than expected top-down effect of fishing, given that this 42 

system is considered to be dominated by strong bottom-up effects of environmental variation on 43 

primary and secondary productivity. 44 

 45 

Keywords: spatial heterogeneity, ecological stability, discards, species distributions, spatial 46 

dynamics  47 
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Introduction 48 

Incorporating spatial heterogeneity--or variability--of biotic and abiotic processes can be 49 

critical for the effectiveness of natural resource management (Noss, 1983; Turner, 1989; Turner 50 

et al., 1995). Many population processes – births, deaths, strength of density dependence, and 51 

immigration vary across space (Bjørnstad et al., 1999), and these patterns can be related to static 52 

habitat features or more ephemeral environmental conditions. Not accounting for these spatial 53 

processes when they are present can lead to biased predictions of population dynamics (Cadrin et 54 

al., 2018; Punt, 2019) and suboptimal management outcomes (Sanchirico and Wilen, 2005). The 55 

distribution of pressures affecting wild populations – including human disturbances – also often 56 

has a spatial component. Spatially heterogenous (i.e., unevenly distributed) human impacts 57 

include, for example, oil spills (Rooker et al., 2013), chemical contamination and eutrophication 58 

from sewage or runoff, habitat loss and fragmentation from logging, urbanization, and 59 

agriculture, and direct removals from hunting or fishing (Dulvy et al., 2004). Spatially 60 

heterogenous human impacts may also have positive effects, particularly for conservation – 61 

examples include parks or reserves which can preserve habitat, increase population densities, and 62 

increase biodiversity (Baskett and Barnett, 2015; Bruner et al., 2001; Halpern and Warner, 2002; 63 

Lester et al., 2009). Regardless of the direction of human impacts or other pressures, ignoring 64 

spatial variability in impacts can result in sub-optimal management strategies and outcomes 65 

(Sanchirico and Wilen, 2005; Ying et al., 2011). How best to incorporate spatial structure in the 66 

design and assessment of natural resource use policy is an outstanding question. 67 

Together, the spatial and temporal heterogeneity in habitat, anthropogenic pressures, and 68 

environmental drivers significantly influence community stability (Hassell, 2000; Huffaker, 69 

1958; Tilman and Kareiva, 1997) and ecological resilience (Barnett and Baskett, 2015; Baskett et 70 
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al., 2006; Holling, 1973; Takashina and Mougi, 2014). The relative importance of habitat, human 71 

disturbance, or environmental variability depends on the life histories of the species in question 72 

and the spatial scale being analyzed (Rouyer et al., 2008). In addition, these drivers could have 73 

complex interactions such that species affected by higher rates of harvest, for example, may 74 

experience larger population fluctuations as a result of environmental variability (Essington et 75 

al., 2015; Hsieh et al., 2006). Even effects of a single driver can be complex. Although fishing is 76 

thought to typically diminish spatial population structure and homogenize density (reviewed by 77 

Ciannelli et al., 2013), spatial variation in recruitment may increase with harvesting in some 78 

cases (Hsieh et al., 2008; Hsieh et al., 2010), and more nuanced patterns may arise depending on 79 

the spatial distribution of harvest and the presence and form of density dependent growth or 80 

movement. 81 

Predicting the spatial variability of fishery take is complicated, because in addition to 82 

biological factors, such as availability of fish, a suite of economic drivers can also influence the 83 

choice of where to fish. Effort is typically concentrated in coastal areas (Stewart et al., 2010), but 84 

other factors that could affect the spatial distribution of effort include prices offered by 85 

producers, fuel prices, and distances to port or protected areas (Girardin et al., 2017; Sanchirico 86 

and Wilen, 1999; Stelzenmüller et al., 2008). Under the ideal free distribution (IFD; Fretwell and 87 

Lucas, 1970), effort is expected to positively correlate with available biomass. There are multiple 88 

examples of fishing effort approximating the ideal free distribution (Gillis, 2003), but there are 89 

also situations where the spatial distribution of effort departs from the ideal free distribution 90 

(Abernethy et al., 2007) as fishers often choose fishing locations based on expected revenue 91 

among other factors (Abbott et al., 2011; Girardin et al., 2017; Haynie et al., 2009; Holland and 92 

Sutinen, 2000; Kuriyama et al., In review). These factors that could cause departures from ideal 93 
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free distribution include the costs of steaming (fuel and time), gear limitations or restrictions, 94 

conflict avoidance, variability in vessel size, habits, and experience of individual fishers, or for 95 

multi-species fisheries, fluctuations in the relative abundance and biomass distribution of target 96 

and nontarget or protected species.  97 

Despite the known consequences of spatial heterogeneity on population and community 98 

dynamics (Hassell, 2000; Huffaker, 1958; Tilman and Kareiva, 1997), spatial processes have 99 

rarely been incorporated into systematic management of marine fisheries at scales fine enough to 100 

match that of the underlying biological process (but see, e.g., salmon harvest allocation by the 101 

Pacific Salmon Commission: http://www.psc.org/). However, there is increasing recognition that 102 

quantifying the effects of spatial heterogeneity on the amount and distribution of fishery catches 103 

and discards is important for implementing ecosystem-based fishery management (EBFM; 104 

Katsanevakis et al., 2011; Link, 2005). Spatial processes are likely particularly important for 105 

management of marine systems because fishing is a dominant driver of marine community 106 

change. The spatial distribution of fishing effort likely affects spatial population and community 107 

dynamics through catch of target and nontarget species and physical damage to habitat from 108 

fishing gear, particularly dredges and trawls (Amoroso et al., 2018; Kaiser et al., 2002; Watling 109 

and Norse, 1998). Furthermore, the local effects of fishing have the potential to influence 110 

ecological dynamics at larger spatial scales in marine systems because the physical features of 111 

oceans create the potential for long-distance dispersal (Kinlan and Gaines, 2003; Strathmann, 112 

1990). This combination of physical connectivity and influence of harvesting on marine 113 

ecosystems has led to increasing desire for marine spatial planning, from implementation of no-114 

take areas to spatial gear restrictions and area-specific catch limits (Crowder and Norse, 2008; 115 

Wood et al., 2008).  116 
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Despite the recognition that spatial processes are important to consider in marine fisheries 117 

management, there is still debate regarding how spatial management policies affect catches and 118 

abundance beyond closure boundaries (Hastings and Botsford, 1999; Hilborn et al., 2004; White 119 

and Kendall, 2007). While spatial closures typically cause biomass of harvested species to 120 

increase within the closure (Lester et al., 2009), biomasses outside can potentially decrease due 121 

to concentration of displaced fishing effort (which often occurs particularly close to closure 122 

edges) unless there is adequate “spillover” of fish moving outside (Karnauskas et al., 2011; 123 

Kellner et al., 2008; Kellner et al., 2007; Moffitt et al., 2009; Rassweiler et al., 2012; White et 124 

al., 2010). Thus, the effect of spatial closures on the amount and distribution of biomass 125 

available to fishers depends on the form and timing of density-dependent population growth and 126 

dispersal, the scale of animal movement relative to closure dimensions, the intensity and spatial 127 

distribution of fishing, and the general effect of fishing on abundance distributions (Baskett and 128 

Barnett, 2015; Ciannelli et al., 2013; Hilborn et al., 2004; Kellner et al., 2008; Moffitt et al., 129 

2009; White and Kendall, 2007; White et al., 2011; White et al., 2010). In this study, we use an 130 

empirical example to integrate over responses of fish and fisher behavior to advance the 131 

understanding of how spatial closures and other marine policies affect the spatial dynamics of 132 

marine faunal density (biomass of a community or assemblage per unit area) and fishery take 133 

throughout a region. 134 

To determine how the spatial dynamics of marine communities and fisheries are 135 

interconnected, we focus on groundfish and their associated bottom trawl fishery on the US west 136 

coast. This system provides an ideal case study because it is a rare instance where fine-scale 137 

spatial information on both catch and discards is available, allowing what—to our knowledge—138 

is the first comprehensive contrast between the spatial heterogeneity of marine faunal density 139 



8 

 

and fishing mortality. Furthermore, the existence of discrete, sequential management changes in 140 

the US west coast groundfish trawl fishery during the study period provides a set of natural 141 

experiments that we use to determine the spatial consequences of marine policy changes. We 142 

leverage the presence of persistent geographical contrast in fishing effort within the study region 143 

to identify the relationship between fishing and the distribution of abundance of marine 144 

assemblages. Specifically, we tested whether interannual changes in spatial heterogeneity of 145 

demersal faunal densities were correlated with those of fishery removals across a range of 146 

timescales, and whether the policy changes during our study period altered the spatial 147 

heterogeneity of densities and removals. We expected that spatial heterogeneity of faunal 148 

densities and fishery removals would increase as fishing effort would become more concentrated 149 

in discrete areas because spatial closures would reduce the trawlable area and catch shares would 150 

cause geographical fleet consolidation.  151 

 152 

Methods 153 

System 154 

US west coast demersal communities and groundfish have a prominent role in the 155 

California Current food web and support large commercial fisheries. Groundfishes are strongly 156 

connected to the larger ecosystem through pelagic larval and juvenile stages that constitute a 157 

major source of forage for other fishes, seabirds, and marine mammals (Field et al., 2007; Mills 158 

et al., 2007; Sydeman et al., 2001), and their ontogenetic movements connect benthic and pelagic 159 

productivity. The US west coast groundfish bottom trawl fleet includes approximately 60 catcher 160 

vessels, and is part of a broader catch share fishery with combined annual net revenue of $59 161 

million USD (catcher vessels alone net $11 million; Errend et al., 2018; PFMC and NMFS, 162 
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2017). This fishery lands many species (~80 total, ~50 commonly) and also discards many at sea. 163 

While some of these species have seasonal migrations, there are apparently few coastwide 164 

interannual trends in spatial community structure (Tolimieri et al., 2015) and individual species 165 

distributions (Thorson et al., 2016), making this system ideal for disentangling the causes of 166 

change in the distribution of catches and local faunal densities. 167 

 168 

Approach 169 

To quantify spatial and temporal changes in the demersal community in response to 170 

fishing, we combined information for fishery-dependent and -independent datasets from 2002 to 171 

2017. We created annual spatial predictions of groundfish biomass and fishery removals (see 172 

Fig. 1 for the spatial prediction domain) and then summarized these outputs with spatial 173 

statistics. To estimate spatial and temporal variation in fishery removals, we fit random forest 174 

models to the total removals (catch and discards) recorded by at-sea observers in the bottom-175 

trawl sector of the US west coast groundfish fishery. As some fishing trips were not attended by 176 

fisheries observers, we predicted the removals from hauls that were not monitored by observers 177 

to describe the spatiotemporal distribution of removals by the entire fleet. We applied similar 178 

models to fishery-independent surveys of biomass density to assess the extent to which 179 

interannual changes in the spatial distribution of removals might have been caused by changes in 180 

animal movement and productivity as compared to fleet dynamics. Following previous studies, 181 

which demonstrated that the influence of fishing on ecosystems is best identified at the guild and 182 

community level (Fay et al., 2013; Fulton et al., 2005; Samhouri et al., 2009; Tam et al., 2017), 183 

we summed catches into assemblages: all animals, fishes, predatory fishes, forage fishes, 184 

flatfishes, rockfishes and protected fishes (see Tables S1-7 for details of the taxonomic 185 
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composition of each group). When testing for an effect of policy changes on the distribution of 186 

density and removals, we compared our outputs for each assemblage among sets of years defined 187 

by their prevailing management type or “regime.” Finally, we describe how we computed spatial 188 

heterogeneity indices for each group and time period to develop spatial ecosystem indicators and 189 

assess whether and how changes in the spatial heterogeneity of removals is related to that of 190 

biomass density. We elaborate on each of these processes below. 191 

 192 

Modeling observed catch 193 

To estimate the spatial and temporal pattern of fishery removals, we analyzed data 194 

reported by at-sea observations of catch provided by the West Coast Groundfish Observer 195 

Program (WCGOP) at the Northwest Fisheries Science Center. The WCGOP records catch 196 

discarded at-sea, which is not recorded in landings data. Observers were present on 100% of trips 197 

since 2011 but only approximately 20% of trips between 2002 and 2010. We performed several 198 

filtering steps to ensure data quality. We confirmed that each haul was unique after merging the 199 

observer and logbook databases based on the fish ticket numbers from recorded landings. We 200 

removed hauls missing fundamental covariate data (e.g., location) and erroneous location or 201 

depth. Fishery logbook data provides basic information for the unobserved hauls during the 202 

2000’s, but the total catches are uncertain given lack of incentives for reporting discards. 203 

Exploratory analyses showed that observed trips were representative of fisher behavior for trips 204 

without observers; there were no substantial differences in the spatial (location and depth) or 205 

temporal (day of year and time of day) distribution of fishing effort between trips with and 206 

without observers. Therefore, we used random forest models fit to the observed hauls from 2002 207 

to 2010 to predict removals from the remaining unobserved hauls in the logbook data (R package 208 
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‘randomForest’; R v3.5.1, (R Core Team, 2018)). We chose to make predictions with random 209 

forests because they had the best predictive skill compared to other spatial models (also see 210 

Stock et al., 2018). 211 

The full fitted models included the following predictor variables: location (haul midpoint 212 

northing and easting, as linear and quadratic terms); depth (natural log-transformed average 213 

depth of haul in meters); date (day of year); time of day (in decimal hours); fishing effort (haul 214 

duration in hours); and year (the only categorical variable). We did not include the retained catch 215 

recorded in the landings data as a predictor because exploratory analyses indicated that discarded 216 

catch quantities were independent of the retained catch within hauls. We assessed predictive 217 

performance for all model fits based on the root-mean-square error and variation explained, as 218 

derived from the feature-bagging technique of the random forest algorithm (which is analogous 219 

to cross-validation (Breiman, 2001)). 220 

 221 

Predicting unobserved catch 222 

 To estimate total removals from all hauls performed by the fishery, we summed the 223 

known removals from the observed hauls and the predicted removals from hauls not monitored 224 

by the WCGOP. To estimate removals from unobserved hauls, we performed predictions from 225 

the random forest models fit to the WCGOP data to the haul information recorded in fishery 226 

logbook data provided by the Pacific Fisheries Information Network (representing self-reported 227 

data for each haul from all groundfish bottom-trawl vessels operating off the US west coast 228 

between 2002 and 2010; 133,716 total hauls, 25,701 of which had an observer present). Adding 229 

in 48,578 observed hauls from 2011-2016 yielded removal biomass for each assemblage from a 230 

total of 182,294 hauls from 2002 to 2016. To summarize spatial patterns of removals, we 231 
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computed the sum of known and predicted catches of each group for each cell in each year, with 232 

resolution and extent matching that for density (described in the section Modeling biomass 233 

density below). We mapped these predictions to visualize the location of anomalous cumulative 234 

removals across all years. 235 

 236 

Modeling biomass density 237 

To assess spatial and temporal variation in faunal density of the demersal community (see 238 

Tables S1-7), we analyzed data from the NOAA Fisheries, Northwest Fisheries Science Center, 239 

US West Coast Groundfish Bottom Trawl Survey (Bradburn et al., 2011). This annual survey 240 

occurs from May to October at depths from 55 to 1280 m, from Cape Flattery, Washington (US-241 

Canada border) to the US-Mexico border. We analyzed the 2003–2017 surveys, which consisted 242 

of 9,671 hauls, where locations were selected randomly on trawlable seafloor habitat (i.e., areas 243 

without extensive rocks or boulders) stratified by depth and latitude. The survey included hauls 244 

from within an area closed to trawling, defined by a narrow depth band (termed the trawl 245 

Rockfish Conservation Area), but not from another large block of area near the southern 246 

boundary of the region (the Cowcod Conservation Area) that was closed to all fishing. We 247 

expected that inclusion of the trawl depth closure would increase spatial heterogeneity biomass 248 

as we discuss in the section below, but that the exclusion of the southern closure would have 249 

little effect on our estimated spatial heterogeneity of biomass unless fish movement rates were 250 

quite high. We fit random forest models with similar structure to that fit to the WCGOP data, 251 

where the response variable was catch-per-area-swept (kg/ha) and predictors included location 252 

(linear and quadratic terms), log depth, day of year, and year (note that time of day was not 253 

included as the survey is constrained to daylight hours). To obtain a smooth surface of predicted 254 
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density across the footprint of the survey area, we predicted biomass density from the random 255 

forest models using depth defined by NOAA bathymetry data 256 

(https://www.ngdc.noaa.gov/mgg/coastal/crm.html), averaged over space to match the resolution 257 

of the survey sampling grid (~2.8 x 3.7 km), which is the spatial resolution we used for all 258 

analyses.  259 

To distinguish the effects of fishing on the spatial distribution of faunal densities, we 260 

separately modeled survey data from trawled (northern) and untrawled (southern) regions (Fig. 261 

1). We defined this boundary to be just north of the Channel Islands National Park, California. 262 

We selected this as the boundary because it represented the latitude at the southernmost location 263 

of the logbook and observer data of commercial trawl activity over all years.  264 

 265 

Evaluating the effect of management changes on spatial distributions of density and removals 266 

We used sequential management policy changes that occurred during our study period as 267 

natural experiments to determine how shifts in the distribution of fishing effort influence the 268 

distribution of fishery removals and faunal densities. A spatial gear closure called the trawl 269 

Rockfish Conservation Area (RCA) was implemented beginning in 2002, which prohibited 270 

trawling at temporally varying depths (generally between 175 and 450 m) along the continental 271 

shelf. To protect Essential Fish Habitat, roughly 25% of the area historically fished was closed to 272 

bottom trawling in 2006 (PFMC, 2008). Catch shares were implemented in 2011. For species 273 

regularly captured in the fishery, we expected that spatial heterogeneity of fishing effort--and 274 

therefore fishery removals--would increase due to the closure policies reducing the trawlable 275 

area and thereby concentrating effort spatially (e.g., fishing-the-line, or the tendency of fishing 276 

effort to concentrate near the boundary of fishery closures; see Table S8 for all hypothesized 277 
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responses to changes in the fishery). Furthermore, we expected catch shares to cause fleet 278 

consolidation toward major ports (PFMC and NMFS, 2017) and to eliminate the race to fish 279 

(perhaps incentivizing shorter steam distances to reduce costs, e.g., Watson et al., 2018). 280 

However, the effect of catch shares on the spatial distribution of effort is difficult to predict, 281 

because of tradeoffs between bycatch risk avoidance and the opportunity for exploratory fishing 282 

(Branch, 2009). It is possible that the presence of fewer vessels—if spread over more area and 283 

time within the year—could reduce the spatial concentration of effort, yet there appears to be no 284 

change in effort concentration resulting from catch shares in this case (Kuriyama et al., In 285 

review).  286 

We expected similar responses of faunal density to management shifts. We hypothesized 287 

that density distributions would become patchier as populations, and potentially productivity-288 

enhancing habitats, recover within spatial closures while relative fishing mortality increases 289 

outside closed areas due to displacement of effort and the catch-maximizing behavior of fishing-290 

the-line (Kellner et al., 2007). Furthermore, if the prevailing assumption that fishing reduces 291 

spatial population structure holds, faunal densities should be becoming more spatially variable in 292 

response to the massive fleetwide effort reduction over the last 30 years (Hilborn et al., 2012) 293 

and subsequent rebuilding of groundfish biomass (PFMC and NMFS, 2017). Alternatively, these 294 

predicted responses may be disrupted by time lags in population responses, animal movement, 295 

density-dependence, unexpected responses of fisher behavior, or short-term fluctuations in 296 

fleetwide effort before and during the study period. 297 

To test our hypotheses regarding the influence of management actions on spatial 298 

heterogeneity of density and removals we summarized temporal changes in patchiness 299 

corresponding to the timing of major policy changes. Within each assemblage and output 300 
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category, we pooled annual measures of spatial heterogeneity among three discrete time periods 301 

representing the phase of each new management regime described above: 1) 2002-2005, when 302 

depth closures (RCA) were implemented and fleetwide effort generally declined (Fig. S1); 2) 303 

2006-2010, when habitat closures (EFH) were implemented and fleetwide effort increased until 304 

2010; 3) 2011-2017, when catch shares were implemented and effort declined slightly (following 305 

a larger effort decline from 2009 to 2011). Hereafter, we will refer to these time periods by their 306 

management regime: depth closures, habitat closures, and catch shares. We tested for differences 307 

in spatial heterogeneity metrics (described in the following section) among management regimes 308 

(where the sampling unit was years) within each assemblage and output type using one-way 309 

analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test, after 310 

confirming that there was no evidence for unequal variances. 311 

 312 

Contrasting change in spatial heterogeneity of density and removals using spatial indices 313 

 To quantify how spatial heterogeneity of density and removals changes with time and 314 

management policies, we computed indices of spatial autocorrelation and spatial variance for 315 

each combination of outputs in each year. We chose these metrics because they describe the two 316 

main axes of easily interpretable patterns in spatial data and researchers have demonstrated that 317 

they can be leading indicators of ecological regime shifts in other systems (Kéfi et al., 2014). To 318 

visually demonstrate what these measures represent, we simulated data with varying spatial 319 

autocorrelation while keeping spatial variance constant and data with changing spatial variance 320 

while keeping spatial autocorrelation constant (Fig. S2). Figure S2 shows that spatial 321 

autocorrelation can be interpreted as a measure of clustering of similar values among nearby 322 

locations (which can be correlated with relative patch size) and spatial variation as a measure of 323 
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the strength of spatial gradients or simply the magnitude of variation across space regardless of 324 

spatial arrangement. To increase comparability among assemblages and between our study and 325 

others, we applied indices of the above metrics to the output for each assemblage as follows: 326 

from each annual set of predictions of removals, northern density, and southern density, we 327 

expressed the spatial variation in the form of the spatial coefficient of variation (CV) and 328 

Moran’s I as an index of spatial autocorrelation. Annual values were standardized by subtracting 329 

each value by their group mean and dividing by their standard deviation. 330 

To determine whether there was a relationship between the spatial pattern of fishery 331 

removals and density, we performed cross-correlation analyses for each assemblage on the time 332 

series of spatial autocorrelation and CV between removals and density in the northern portion of 333 

study region (the only area where trawl fishing occurs). This test allowed us to determine 334 

whether changes in spatial patterns of removals and density are correlated, and with what lag and 335 

sign. For example, high correlation at negative lags indicate that changes in removals lead 336 

changes in density, whereas positive lags indicate that changes in density occur prior to that of 337 

removals. Prior to performing cross-correlation tests, we pre-whitened each series (removed the 338 

autocorrelation structure) with the best fit autoregressive integrated moving average model 339 

(Johnson, 2018). 340 

 341 

Results 342 

 The final models displayed a broad range of predictive ability across assemblages and 343 

response type and area (Table S9). In general, removals were more predictable than density. 344 

Density was better predicted in the southern part of the study region than the northern region for 345 

all fauna, fishes, predators, and flatfishes, while the opposite was true for rockfishes, forage, and 346 
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protected species. Variation explained was highest for rockfish, flatfish, and predator removals. 347 

Due to poor performance of the models predicting southern density of forage and protected 348 

species (pseudo-R2 < 6%; Table S9), we did not include these results in map predictions or post-349 

hoc testing. 350 

Mean predicted densities of all groups were typically highest within a band of 351 

intermediate depth on the outer shelf and near the shelf break, whereas densities of forage and 352 

protected species were sparse and patchier due to lower detection rates (Fig. 2). High densities of 353 

flatfishes also extended to shallower shelf waters north of central Oregon. Predators and 354 

rockfishes were in greatest densities at slightly deeper depths. All groups except forage species 355 

had high density areas in the far northern end of the study region, west-southwest of Cape 356 

Flattery, Washington. Another high density area common to all groups (but much less prominent 357 

for predators and protected species) was located within a small area of the outer shelf off Half 358 

Moon Bay in central California.  359 

Across all years of the study period, cumulative removals were distributed similarly to 360 

the density distributions for most groups, with particular exceptions of forage and protected 361 

species (Fig. 3); however, the highest densities of all species combined were typically nearer to 362 

shore than removals, particularly off northern California and Oregon. Rockfish removals were 363 

somewhat more diffuse and less patchy than predicted densities, and protected species removals 364 

were much more broadly distributed than predicted densities. All removals occurred north of the 365 

Channel Islands National Park and predominantly north of Point Conception, with the majority 366 

of large removals taken north of Monterey, California. The largest concentrations of high 367 

removals were found off Washington for all groups except rockfishes and forage species.  368 

 369 
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Change in spatial heterogeneity among management regimes 370 

The spatial CV of removals was typically highest during the beginning of the study 371 

period when managers implemented depth closures and declined in the middle years after 372 

implementation of habitat closures (Fig. 4a-g). This pattern was statistically significant for the 373 

broadest assemblages (all species, fishes, predators) and protected species (Fig. 4a-c,g; Table 374 

S10). Rockfish and forage removal spatial CVs increased significantly from the periods with 375 

depth and habitat closures to the end of the study period, when catch shares were in effect. 376 

Spatial autocorrelation of removals was typically highest during the habitat closure period (Fig. 377 

4h-n). Furthermore, values were significantly lower in the catch share period than the depth 378 

closure period for all species, fishes, flatfishes, and protected species (Fig 4h,i,k,n). Values for 379 

rockfish and forage species were also lowest in the catch share period, yet had no significant 380 

differences between the depth closure and habitat closure periods (Fig. 4l,m). 381 

Trends in spatial heterogeneity were less consistent for density than removals. No 382 

statistically significant changes were apparent in the spatial CV or autocorrelation of density in 383 

the untrawled (southern) region (Fig 5). In the trawled (northern) region the CV of density for all 384 

species and fishes were lowest during the habitat closure period, but values in the depth closure 385 

and catch share periods were statistically indistinguishable (Fig. 6a,b). In contrast, protected 386 

species CV was highest during the habitat closure period (Fig. 6g). Spatial autocorrelation of 387 

flatfish and forage species densities in the trawled region was lowest in the habitat closure period 388 

(Fig 6k,m); although the difference between the habitat closure and catch share period was not 389 

statistically significant for forage species. Spatial autocorrelation in density of the trawled region 390 

appeared to generally increase for some groups, particularly fishes and all species combined 391 

(Fig. 6h,i); however, the differences were not statistically significant.  392 
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 393 

Leading and lagging indicators in fished areas 394 

 The cross-correlation of spatial CV indicated that for all species combined and all fishes, 395 

there were significant positive correlations between density and removals at lags of -1 or 0 years 396 

(Fig. 7a,b), meaning that changes in removals lead changes in density by one year and they 397 

respond with a similar sign within year. Similarly, correlations were strong at lag -1 for predators 398 

and protected species (Fig. 7c,g), although neither were statistically significant and the latter 399 

correlation was negative and accompanied by a statistically significant correlation at lag 3. 400 

Flatfishes had a statistically negative correlation at lag -3 (Fig. 7d). Forage species had the best 401 

support for changes in density leading removals, with a statistically significant negative 402 

correlation at lag 1. Relationships were weaker and not statistically significant for rockfishes 403 

(Fig. 7e). 404 

 Patterns of cross-correlation of spatial autocorrelation were less clear than that of spatial 405 

CV, but the most prominent pattern was that changes in density led those of removals by 3 years 406 

(Fig. 8). Lag 3 correlations were high for all groups except protected species, and were positive 407 

for all species combined, fishes, predators, and forage species, while negative for flatfishes and 408 

rockfishes, yet the correlation was statistically significant only for the two broadest groups and 409 

forage species. Predators had greater correlation at lag 0 (negative) and rockfishes had greater 410 

correlation at lag 2 (positive). Correlations for protected species were greatest at lag 0 (positive) 411 

and lag -4 (negative), but the correlations were not statistically significant.  412 

 413 

Discussion 414 
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Our results demonstrate that the spatial heterogeneity of demersal marine communities 415 

and associated fisheries is variable in time and responsive to changes in management regimes. 416 

We show that there is a strong relationship between spatial heterogeneity in fishery removals and 417 

spatial heterogeneity in a wide range of marine animal assemblages. Our result is particularly 418 

notable because fishing intensity was low compared to past levels within our system and relative 419 

to other demersal systems (Hilborn and Ovando, 2014; Hilborn et al., 2012); furthermore, choice 420 

of fishing location is driven substantially by fishers habits (Girardin et al., 2017; Holland and 421 

Sutinen, 2000; Kuriyama et al., In review) and distance from port or previous location, rather 422 

than expected revenue alone (Abbott et al., 2011; Haynie et al., 2009). Our finding that changes 423 

in spatial CV of removals lead those of density provides evidence of a direct top-down influence 424 

of fishing in a system considered to be driven largely by bottom-up dynamics (Field et al., 2006; 425 

Ware and Thomson, 2005). For the broadest assemblages, fishes and all fauna, trends in spatial 426 

CV among management regimes were fairly similar for removals and density in the trawled 427 

region, whereas patterns of spatial autocorrelation were less consistent. Changes in spatial 428 

heterogeneity of density in the untrawled region rarely bore any relationship to either density in 429 

the trawled region or removals, providing some additional support for fishing as a driver of 430 

change in density distributions.  431 

Previous research identified fishery catch as an inconsistent ecological indicator of 432 

pressure, yet most of these analyses use only the magnitude of the landed catch (Shin et al., 433 

2010), missing much of the consequences of fishing by not accounting for discarded bycatch and 434 

the spatial distribution of fishery removals. Here, we find that spatial heterogeneity of catch and 435 

discards combined appears to be an effective indicator of change in spatial distribution of marine 436 

faunal density, as reflected by the high leading correlation and within-year correlation of the 437 
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spatial CV of removals and fish density. However, the relationship varied among assemblages 438 

and in some cases it appeared that changes in the spatial field of removals—particularly the 439 

spatial autocorrelation of removals—lagged that of density, perhaps reflecting fishers moving to 440 

find fish. One interpretation is that changes in the scale of patchiness of density drives that of 441 

removals, in other words, bottom-up influences may be more noticeable at larger spatial scales. 442 

While we used the footprint of trawling effort to delineate our spatial strata (i.e., 443 

northern/trawled, southern/untrawled), management applications of spatial ecological indicators 444 

would likely require tailoring the selection of the number and position of strata based on the 445 

specific populations or fisheries of interest. 446 

The notion that fishery removals at regional scales influence the distribution of fish 447 

biomass within fished areas is intuitive, yet many studies have not found such a relationship—or 448 

have found that the effects of fishing are small relative to environmental drivers. If removals are 449 

large enough relative to local biomass, surveys performed immediately before and after catch 450 

should detect the influence of fishing on faunal density, yet longer durations between sampling 451 

and removals allow for these direct effects to be obscured by animal movement, reproduction, 452 

growth and to a lesser extent natural mortality. Ono et al. (2016) used the same fishery-453 

independent survey data as that used in this study to evaluate causes of change in Dover sole 454 

(Microstomus pacificus) distribution and found no evidence of fishery influence between 455 

sampling periods of approximately 1-7 months, citing low exploitation rates for the lack of 456 

relationship. If low exploitation rates were the sole reason for this result, we should have also 457 

found no relationship between density and removals, as Dover sole are among the primary target 458 

species within our assemblages. That said, our results may not be as different as they appear on 459 

the surface, as we also found no correlation between flatfish removals and density at timescales 460 
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shorter than three years. There did appear to be some negative relationship at longer timescales, 461 

reflected in both the cross-correlation of spatial CV and opposing trends in spatial 462 

autocorrelation among management regimes. Some of this discrepancy could be due to the fact 463 

that Ono et al. (2016) relied on logbook data, which suffers from reporting error and inconsistent 464 

reporting of discards, issues addressed by our use of observer data. Furthermore, most flatfishes 465 

have greater rates of movement and faster life histories than reef-associated groundfishes such as 466 

rockfishes, so their population responses may generally make it more difficult to detect spatial 467 

influences of fishing.  468 

While there were many similarities between spatial distributions of density and fishery 469 

removals, some notable differences highlight how policy drivers can cause removal patterns to 470 

deviate from what is expected under the ideal free distribution. The largest removals often came 471 

from somewhat deeper waters further off shore than the highest densities, particularly off 472 

northern California and Oregon, likely due in part to the closure of waters between 90 and 275m 473 

depths to trawling coastwide (Fig. S3). Greater prevalence of rock outcrops in shallower shelf 474 

waters than deeper slope waters is also likely a factor, as footrope gear restrictions made it 475 

difficult and risky to trawl over rocky substrates, preventing the majority of trawling in such 476 

habitats (Bellman et al., 2005). As many of the later closures of essential fish habitat encompass 477 

rocky substrates, submarine canyons, or extend deeper than our study domain, it is difficult to 478 

say to what extent they contribute to discrepancies between distributions of removals and 479 

densities, but we found some evidence of large removals near the boundary of habitat and depth 480 

closures northward from the greater Monterey, California region (Fig. S3). While the adjacency 481 

of large removals and high density near closures is somewhat consistent with fishing-the-line and 482 

associated spillover effects (Halpern et al., 2009; Kellner et al., 2007; Murawski et al., 2004; 483 
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Stelzenmüller et al., 2008), such inference is beyond the scope of our study; furthermore, this 484 

pattern could be a reflection of trawlable habitat and fleet distribution rather than explicit effort 485 

or catch redistribution toward boundaries of fishery closures.  486 

Spatial heterogeneity in fishery removals typically declined during the study period, 487 

which is counter to our expectation that policy changes would increase spatial heterogeneity of 488 

removals (particularly for groups with species targeted by the fishery). Perhaps habitat closures 489 

did not lead to increased spatial CV because fishers were already effectively prevented from 490 

trawling in these areas due to footrope restrictions implemented in 2000 (Bellman et al., 2005), 491 

or that closures did not lead to fishing-the-line behavior and instead spread effort over remaining 492 

habitat features in soft sediments (Barnett et al., 2017). This "filling-in" of fishing effort might 493 

explain the countertrend in spatial autocorrelation of removals, which did increase during the 494 

time period when habitat closures were implemented. The subsequent decline in spatial 495 

autocorrelation of removals coinciding with catch share implementation was not well explained 496 

by the distribution of trawl effort, which actually became more positively autocorrelated across 497 

this period (Kuriyama et al., In review). Decreasing patchiness of removals could have been the 498 

result of increasing fine-scale contrast in density (as observed in this study for all fishes), or 499 

increased targeting efficiency (Kuriyama et al., In review) likely related to nuanced changes in 500 

fisher behavior such as tow duration and time of day that coincided with catch shares 501 

implementation (Miller and Deacon, 2017). 502 

Similar to patterns of removals, trends in spatial heterogeneity of density in the trawled 503 

region did not increase as we expected. Trends in spatial heterogeneity of density were either not 504 

statistically significant or inconsistent across assemblages. Spatial heterogeneity of some groups 505 

declined during the period when habitat closures began. This period also contained the only 506 
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years with a substantial increase in the number of hauls fleetwide, as effort generally declined 507 

over the study period (Fig. S1). Because fishing is thought to decrease spatial variation in 508 

density, declines in spatial CV of overall fish density during the habitat closure period could 509 

have been driven by increasing effort concentrated on a smaller amount of fishable habitat. 510 

Likewise, increased spatial heterogeneity of density in the following period of catch share 511 

management might have been caused by decreasing fleetwide effort. However, the changes in 512 

effort occurring over the study period are likely small relative to those over the history of the 513 

fishery (Hilborn et al., 2012). Decreases in density CV (of fishes) and autocorrelation (of 514 

flatfishes and forage species) could have also resulted from high rates of fish movement, density-515 

dependent movement out of closures, or density-dependent population or individual growth, but 516 

this does not explain the subsequent increase in these metrics for fishes and flatfishes observed 517 

after catch shares. Other potential causes of the deviation between our expectations and results 518 

could be due to time lags in density responses or unknown factors regulating the effect of fishing 519 

on fuanal distributions (e.g., fisher foraging behavior or harvest control rules). Further, there 520 

could be a complex interaction between changes in spatial heterogeneity of the system and the 521 

pressure that we have yet to understand. Thus, the direct inference that spatial closures have 522 

mixed results and catch shares increase spatial heterogeneity of faunal density distributions 523 

and—by association—ecological stability, should be evaluated with caution. 524 

 Like many observational studies in fisheries science, the results of our study must be 525 

interpreted with some caveats. First, although we ascribe differences in density responses in the 526 

Southern California Bight and the rest of the study region to the presence of trawling, there are 527 

also differences in oceanography, coastal and seafloor topography, and species composition 528 

between the two subregions. Second, predictability of density and removals was low for the 529 
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forage and protected species groups as they are inherently patchily distributed and not well 530 

sampled by trawl gear. However, we contend that there is still value in including these groups to 531 

determine responses for species not targeted—or actively avoided—by the fishery. Third, we 532 

note that our use of multiple comparisons means it is likely that at least one test resulted in 533 

falsely rejecting the null hypothesis; however, one inappropriate inference would not change the 534 

broader conclusions of this study. Finally, we do not explicitly account for movement and 535 

density-dependent population responses, yet these factors might reduce our ability to explain 536 

relationships between patterns of removals and density. 537 

Beyond the local direct effects of fishing, faunal distributions may be affected indirectly 538 

by reductions in population size, as evidenced by hyperstability or hyperdepletion in some 539 

fisheries (Rose and Kulka, 1999). However, such effects require high levels of contrast in 540 

population size that is rarely observed over the same period as extensive spatially-referenced 541 

sampling, and thus abundance-distribution relationships are not yet well understood for fishes 542 

(Shepherd and Litvak, 2004). Future work on how fishing affects species distributions would 543 

benefit from continuing and extending large-scale spatial monitoring efforts and experimental 544 

manipulations of at least moderate scale relative to the body size and dispersal ability of a given 545 

species. 546 

 We show how spatial indicators of fishery activity and faunal densities can be analyzed to 547 

monitor communities and assess ecosystem effects of fishing even in lightly exploited systems. 548 

Although our analytical framework revealed the relationship between distributions of fish and 549 

fishing that have proven elusive in other studies, the system did not always respond as expected 550 

to management changes. Understanding of how management and conservation actions modify 551 

the influence of fishing on metacommunities could be advanced by differentiating the general 552 



26 

 

effect of changing intensity of fishing from changing the spatial distribution of fishing. Defining 553 

how these dimensions of fishing influence distributions and how they scale with changes in 554 

faunal density and community composition will make spatial indicators of fishing a useful 555 

measure of ecosystem pressure to combine with spatial indicators of environmental drivers in 556 

advancing ecosystem-based fishery management. To apply spatial ecological indicators to 557 

management, further research would be required to evaluate appropriate scales of analysis based 558 

on factors specific to a system, such as the distribution, movement and demographic connectivity 559 

of species and the spatial distribution of their associated fisheries and oceanographic drivers of 560 

productivity. If one could find consistent relationships between fishing and spatial heterogeneity 561 

of density, they could quantify how fishing may be modify population and community stability 562 

beyond its potential influence on temporal variation of abundance (Ciannelli et al., 2013; Hsieh 563 

et al., 2008; Hsieh et al., 2006; Hsieh et al., 2010).  564 

 565 
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ABSTRACT 14 

The concept of ecological resilience (the amount of disturbance a system can absorb 15 

before collapsing and reorganizing) holds potential for predicting community change and 16 

collapse—increasingly common issues in the Anthropocene. Yet neither the predictions nor 17 

metrics of resilience have received rigorous testing. The cross-scale resilience model, a leading 18 

operationalization of resilience, proposes resilience can be quantified by the combination of 19 

diversity and redundancy of functions performed by species operating at different scales. Here, 20 

we use 48 years of sub-continental avian community data aggregated at multiple spatial scales to 21 

calculate resilience metrics derived from the cross-scale resilience model (i.e., cross-scale 22 

diversity, cross-scale redundancy, within-scale redundancy, and number of body mass 23 

aggregations) and test core predictions inherent to community persistence and change. 24 

Specifically, we ask how cross-scale resilience metrics relate community stability and collapse. 25 

We found low mean cross-correlation between species richness and cross-scale resilience 26 

metrics. Resilience metrics constrained the magnitude of community fluctuations over time 27 

(mean species turnover), but resilience metrics but did not influence variability of community 28 

fluctuations (variance in turnover). We show shifts in resilience metrics closely predict 29 

community collapse: shifts in cross-scale redundancy preceded abrupt changes in community 30 

composition, and shifts in cross-scale diversity synchronized with abrupt changes in community 31 

composition. However, we found resilience metrics only weakly relate to maintenance of 32 

particular species assemblages over time. Our results distinguish ecological resilience from 33 

ecological stability and allied concepts such as elasticity and resistance: we show communities 34 

may fluctuate widely yet still be resilient. Our findings also differentiate the roles of functional 35 

redundancy and diversity as metrics of resilience and reemphasize the importance of considering 36 
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resilience metrics from a multivariate perspective. Finally, we support the contention that 37 

ecological stability is nested within ecological resilience: stability predicts the behavior of 38 

systems within an ecological regime, and resilience predicts the maintenance of regimes and 39 

behavior of systems collapsing into alternative regimes. 40 

 41 

Key Words 42 

Resilience, cross-scale resilience model, elasticity, functional diversity, functional redundancy, 43 

regime shift, species richness, stability, turnover 44 

  45 
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INTRODUCTION 46 

“If there is a worthwhile distinction between resilience and stability it is important that both be 47 

measurable.” – C. S. Holling, 1973 48 

 49 

As the Anthropocene progresses, community change and collapse are increasingly 50 

common (Folke et al., 2004; Steffen et al., 2015). The concept of ecological resilience, defined 51 

by C. S. Holling (1973) as the amount of disturbance a system can absorb before collapsing into 52 

an alternative regime, holds potential for predicting community change and collapse (Angeler & 53 

Allen, 2016). Quantifying ecological resilience has been a long-term pursuit in ecology 54 

(Carpenter, Westley, & Turner, 2005; Cumming et al., 2005; Standish et al., 2014), ecological 55 

resilience has been applied internationally in management frameworks (Briske et al., 2008; 56 

Bestlemeyer et al., 2017; Seidl et al., 2016), and multiple ecological resilience metrics have been 57 

proposed (Allen et al., 2005; Baho et al., 2017). Yet neither the core predictions nor metrics of 58 

ecological resilience theory have received rigorous testing (Angeler and Allen, 2016; Sundstrom 59 

et al., 2018). 60 

Ecological resilience theory makes key predictions concerning complex, nonlinear, and 61 

abruptly shifting system behavior, making it uniquely applicable to Anthropocene issues (L. H. 62 

Gunderson, 2000). Ecological resilience is related to, but distinct from, ecological stability (the 63 

ability of a system to return to an equilibrium state post-disturbance—also known as 64 

“engineering resilience,” “bounce-back time,” “resistance,”, and “elasticity”; C. S. Holling, 65 

1973; Hillebrand et al., 2018; Pimm, 1984). This is a crucial distinction because while ecological 66 

resilience makes predictions concerning abrupt regime shifts into alternative states, ecological 67 

stability only makes predictions concerning a single regime (Angeler and Allen, 2016). 68 
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Ecological resilience theory predicts that a system may fluctuate greatly (have low stability and 69 

exhibit non-equilibrium behavior) and yet have high ecological resilience or conversely fluctuate 70 

little and have low ecological resilience (Angeler & Allen, 2016; C. S. Holling, 1973). That is, a 71 

resilient system will constrain the magnitude of fluctuations so that the system stays within a 72 

given regime, but the same resilient system may exhibit high instability within the regime (L. H. 73 

Gunderson, Allen, & Holling, 2012). By definition, loss of ecological resilience increases the 74 

likelihood of system collapse and regime shifts due to loss of structures, functions, and feedbacks 75 

that maintain the current regime (Allen, Gunderson, & Johnson, 2005). Thus, ecological 76 

resilience should be both quantifiably distinct from stability and clearly correspond with 77 

community change and collapse (C. S. Holling, 1973; Standish et al., 2014). 78 

The cross-scale resilience model, a leading model for operationalizing and quantifying 79 

ecological resilience (hereafter referred to simply as “resilience”), provides the opportunity to 80 

test these core predictions of resilience theory (G. Peterson et al., 1998; S. M. Sundstrom et al., 81 

2018). The cross-scale resilience model establishes that redundancy and diversity of organism 82 

functions across discontinuous scale domains of resource use in a system confer resilience (C. S. 83 

Holling, 1992; G. Peterson et al., 1998; Figure 1). Quantifying redundancy and diversity of 84 

functions across these discontinuous scale domains can produce metrics to estimate the relative 85 

resilience of systems (Bouska, 2018, Sundstrom et al., 2018; Angeler et al., 2019a). For example, 86 

Allen et al. (2005) proposed several cross-scale resilience metrics such as within-scale 87 

redundancy, cross-scale redundancy, cross-scale diversity, and number of scale domains. 88 

Here, we use a half-century of sub-continental avian community data to calculate cross-89 

scale resilience metrics and test how resilience relates to community stability and collapse. We 90 

do this by testing two core resilience theory predictions concerning its relationship with stability 91 
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and two concerning its relationship with community change and collapse. The first resilience-92 

stability relationship prediction is that resilience is distinct from stability: we test this by 93 

quantifying the degree of correlation between species richness and cross-scale resilience metrics. 94 

Although species richness is not a direct metric of stability, it is correlated with stability and 95 

influences the ability of a system to “bounce back” from disturbances (Hautier et al., 2015; Ives 96 

& Carpenter, 2007; McCann, 2000; Mougi & Kondoh, 2012; Tilman & Downing, 1994). The 97 

second resilience-stability relationship prediction is that resilience will constrain the magnitude 98 

of system fluctuations but not their variability: we test this by determining the relationship 99 

between cross-scale resilience metrics and the mean and variance of annual species turnover. In 100 

this case, cross-scale diversity is expected to reduce mean turnover the most, and all resilience 101 

metrics should have little influence on turnover variance (Allen et al., 2005; Angeler et al., 102 

2019a). The first resilience-collapse relationship prediction is that changes in cross-scale 103 

resilience metrics will predict community collapse: we test this by determining if changes in 104 

cross-scale resilience metrics synchronize with abrupt shifts in community composition. Within-105 

scale redundancy, cross-scale redundancy, and number of scale domains are expected to most 106 

strongly predict community collapse (Nash et al., 2016; Roberts et al., 2019; Spanbauer et al., 107 

2016). Finally, the second resilience-collapse prediction is cross-scale resilience metrics will 108 

only weakly predict maintenance of specific species assemblages: we test this by determining 109 

how cross-scale resilience metrics relate to changes in community similarity over time (L. H. 110 

Gunderson, 2000; Angeler et al., 2019b).  111 

 112 



7 
 

METHODS 113 

Calculating cross-scale resilience metrics 114 

Cross-scale resilience metrics are calculated by first identifying a biotic community 115 

within a system (e.g., an avian forest community) and acquiring census presence/absence data 116 

from the biotic community (Allen et al., 2005), identifying the discontinuous scale domains at 117 

which functions are performed by each species in the biotic community (Nash et al., 2014a, b), 118 

and finally using functional traits of species across scale domains to estimate functional 119 

redundancy and diversity within and across scale domains (Fischer et al., 2007).  120 

 121 

Identifying biotic communities 122 

For biotic community data, we used the North American Breeding Bird Survey (BBS) 123 

which estimates bird community composition via yearly roadside avian point-count surveys 124 

(Sauer et al., 2013). Begun in 1966, the BBS is conducted along a series of > 2500 permanent, 125 

randomly-distributed routes during the breeding season (Sauer et al., 2013). We analyzed BBS 126 

route data from 1967 - 2014. 127 

We defined avian communities by spatially binning BBS routes according to US 128 

Environmental Protection Agency (EPA) ecoregions (Omernik & Griffith, 2014; Figure 2). 129 

These ecoregions are spatially hierarchical, meaning that finer-scaled ecoregions are bounded by 130 

and nested within larger-scaled ecoregions. Because smaller-scale EPA ecoregion boundaries are 131 

bounded by US political boundaries, we only consider BBS routes within the continental United 132 

States. We considered avian communities at the three progressively smaller spatial scales (EPA 133 

ecoregion levels II, III, IV; Figure 2). If binned BBS data within an ecoregion did not extend for 134 
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≥ 24 years (i.e., ≥ 50% of the study period), we excluded that ecoregion from analysis (Table S1; 135 

see supplementary computer code for further details). 136 

 137 

Identifying discontinuous scale domains 138 

We performed discontinuity analysis on binned BBS data for each ecoregion at each 139 

scale using the “discontinuity detector” method (Barichievy et al., 2018) based on the Gap Rarity 140 

Index which identifies scale domains by detecting discontinuities in log-ranked organism body 141 

masses (Restrepo et al., 1997). For taxa with determinant growth, mean body mass reliably 142 

differentiates size aggregations and is strongly allometric to the scale domains at which functions 143 

are carried out by organisms (Allen et al., 2006; C. S. Holling, 1992; Nash et al., 2014b). 144 

Because of known negative observation biases for waterfowl and allied families and because 145 

water-dwelling avian families’ follow different body masses patterns than terrestrial avian 146 

families, we removed all species from the Anseriformes, Gaviiformes, Gruiformes, 147 

Pelecaniformes, Phaethontiformes, Phoenicopteriformes, Podicipediformes, Procellariiformes, 148 

and Suliformes families from the analysis (C. S. Holling, 1992; S. M. Sundstrom, Allen, & 149 

Barichievy, 2012). We obtained mean body mass estimates for all remaining species from the 150 

CRC Handbook of Avian Body Masses (Dunning Jr, 2007). Because Gap Rarity Index tends to 151 

overestimate discontinuities in species-poor samples, we removed any route with < 40 species 152 

observed (Barichievy et al., 2018; Stow, Allen, & Garmestani, 2007). We simply counted the 153 

number of body mass aggregations to obtain that metric.  154 

 155 
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Estimating within- and cross-scale functional redundancy, cross-scale diversity 156 

We assigned functional types to each species according to diet and foraging strategies 157 

(Ehrlich, Dobkin, & Wheye, 1988). We broke diets into carnivore, herbivore, and omnivore 158 

groups, where omnivores are defined as species with approximately even proportions of plant 159 

and animal intake (Bouska, 2018). We divided foraging strategies into five groups: water, 160 

ground, foliage, bark, and air (S. M. Sundstrom et al., 2012). Thus, functional groups represented 161 

combinations of diet and foraging strategies (e.g., water carnivore, ground herbivore, etc.). 162 

We then used functional groups along with body mass aggregations to calculate cross-163 

scale redundancy (average number of aggregations for which each functional group has at least 164 

one representative), within-scale redundancy (the average number of representatives from each 165 

functional group within each aggregation), and cross-scale diversity (the average diversity of 166 

functional groups across aggregations) metrics for each ecoregion within each of the three spatial 167 

scales (Figure 2). The equations for these are as follows: 168 
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Where a is the number of body mass aggregations, φ is the number of functional groups with at 174 

least one representative in an aggregation, f is the jth functional group, and p is the jth species in 175 

each aggregation. 176 

 177 

Resilience-Stability Test 1: Relationship between cross-scale resilience and richness 178 

We used cross-correlation to compare species richness with each cross-scale resilience 179 

metric (number of body mass aggregations, cross-scale redundancy, within-scale redundancy, 180 

cross-scale diversity) for each ecoregion across -5 to 5 lags. That is, we used cross-correlation to 181 

quantify temporal covariance of richness and resilience metrics, determining if patterns of 182 

resilience metrics preceded (back to 5 time steps before) or followed (forward to 5 time steps 183 

after) patterns of richness. For each lag, we calculated the mean and 85% confidence intervals of 184 

the absolute values of correlation coefficients across ecoregions. 185 

 186 

Resilience-Stability Test 2: Relationship between cross-scale resilience and turnover 187 

Second, we determined the relationship between cross-scale resilience metrics and 188 

species turnover. We calculated relative species turnover (the proportion of the species pool that 189 

turns over annually) using the following equation (Diamond, 1969; Wonkka, West, Twidwell, & 190 

Rogers, 2017): 191 

 192 

Turnovert + 1 = ( Ut + Ut + 1 ) / ( St  + St + 1 ) 193 
 194 

where Ut is the number of species present in the ecoregion at year t that were not present in year t 195 

+ 1; Ut + 1 is the number of species present in the ecoregion at year t+1 that were not present in 196 
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year t; St is the total number of species present in the ecoregion at year t; and St + 1 is the total 197 

number of species present in the ecoregion at year t + 1.  198 

We then developed two linear mixed models: 1) to determine if resilience metrics 199 

influenced the magnitude of species turnover, we used the mean of the absolute value of species 200 

turnover over time as the response variable, and 2) to determine if resilience metrics influenced 201 

the variability of species turnover, we used the standard deviation of species turnover over time 202 

as the response variable. For both models, we set mean resilience metrics over time as the 203 

predictor variables. We allowed intercepts to vary by hierarchically nested EPA ecoregions (e.g., 204 

for level III ecoregions, random effect in R package “lme4” syntax was “( 1 | Level I / Level II )” 205 

). To minimize collinearity, we calculated variance inflation factors and sequentially removed 206 

predictor variables (resilience metrics) with the highest variance inflation factor until variance 207 

inflation factor values for all variables were ≤ 3. 208 

 209 

Resilience-Collapse Test 1: Relationship between cross-scale resilience and abrupt shifts 210 

We determined whether significant temporal shifts in cross-scale resilience metrics 211 

synchronized with abrupt shifts in community composition. To identify abrupt shifts in 212 

community composition, we 1) performed detrended correspondence analysis (DCA; “decorana” 213 

function from the vegan package in R) on Hellinger-transformed relative abundances of species 214 

in each ecoregion over time, 2) extracted values of the first DCA axis (DCA1) for each year, 3) 215 

used generalized additive models (GAMs) to model changes in DCA1 over time (with year as 216 

the smoothed predictor) for each ecoregion, 4) extracted predicted DCA1 response values from 217 

GAMs for each ecoregion (Figure 3a), and 5) determined where community structure 218 

significantly changed by first calculating derivatives and 85% confidence limits around the 219 
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derivatives from the GAM predictions and then locating ranges in the time series where 220 

derivative confidence limits did not encompass zero (Simpson, 2018; Figure 3b). We located 221 

shifts in cross-scale resilience metrics in a similar fashion–by extracting GAM predictions, 222 

calculating derivatives and confidence intervals, and locating ranges where confidence limits did 223 

not encompass zero (Figure 3b). To test for synchrony between cross-scale resilience metrics and 224 

structural community change, we encoded DCA1 and resilience metric time series as binary 225 

variables, where either a significant shift (85% confidence limit of derivative did not encompass 226 

zero) occurred or did not for each time step (i.e., each year of BBS data; Figure 3c). We 227 

aggregated significant increases and decreases into an absolute value because both significant 228 

increases and decreases in ordinated values (e.g., DCA) or resilience metrics, regardless of 229 

directionality, could signal regime shifts. We set the binary DCA1 variable as the response and 230 

binary resilience metrics predictors in a binomial generalized linear mixed model. We checked 231 

for collinearity with variance inflation factors. 232 

 233 

Resilience-Collapse Test 2: Relationship between cross-scale resilience and community 234 

similarity 235 

We determined the relationship between cross-scale resilience metrics and patterns of 236 

community similarity over time. We estimated community similarity over time via the Jaccard 237 

index. That is, we calculated Jaccard similarity between each year of BBS data for each 238 

ecoregion and then used linear regression to estimate change in community identity over time 239 

(i.e., slope; sensu Dornelas et al., 2014). Because the Jaccard index ranges from 0 (complete 240 

dissimilarity in species) to 1 (complete similarity in species), a slope of zero indicates no change 241 

in community composition over time, and a slope of -1 indicates a complete change in species 242 
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pool. We then developed linear mixed models, setting the slope of the Jaccard index as the 243 

response variable. For predictor variables, we used initial resilience metric values (the 244 

chronologically first value for each resilience metric for each ecoregion) and mean resilience 245 

metric values (the average of each resilience metric value across the time series for each 246 

ecoregion). To account for variance in certainty of Jaccard slope fits, we used 1 / standard error 247 

of each Jaccard slope fit as prior weights for linear mixed models. We used the methods from 248 

Test 2 for minimizing collinearity as above (i.e., sequential removal of predictor variables via 249 

variance inflation factors). 250 

 251 

RESULTS 252 

Resilience-Stability Test 1: Relationship between cross-scale resilience and richness 253 

Mean cross-correlation between richness and resilience metrics was low across scales and 254 

individual metrics, ranging from r = 0.16 ± 0.01 (cross-scale redundancy at lag -5 at the finest 255 

scale) to r = 0.63 ± 0.02 (cross-scale diversity at lag 0 at the finest scale; Figure 4). Patterns were 256 

consistent across scales: the strongest correlation between richness and all metrics at all scales 257 

occurred at lag zero (annually) after which correlations decreased sharply (Figure 4). At the 258 

broadest scale (level II), confidence limits show little difference between individual metrics’ 259 

correlations with richness (Figure 4). At the finer scales (levels III, IV), cross-scale diversity 260 

correlated most strongly with richness (Figure 4). Within-scale redundancy showed the second 261 

greatest correlation with richness (max r = 0.50 ± 0.02 at level IV, lag 0; Figure 4). Cross-scale 262 

redundancy (r = 0.34 ± 0.02 at lag 0) and number of aggregations (0.29 ± 0.02 at lag 0) displayed 263 

the weakest correlation with richness at finer scales (Figure 4). 264 

 265 
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Resilience-Stability Test 2: Relationship between cross-scale resilience and turnover 266 

Resilience metrics had significantly negative relationships with mean annual species 267 

turnover at all scales, but resilience metrics showed little or no association with standard 268 

deviation of annual species turnover (Figure 5; Table S1). Cross-scale diversity was a significant 269 

predictor of mean species turnover at the broadest scale and the strongest predictor at the finest 270 

scale (-0.027 ± 0.001 and -0.034 ± 0.002 at levels II and IV respectively), and cross-scale 271 

diversity was a significant negative predictor of standard deviation in species turnover at the 272 

finest scale (-0.004 ± 0.002). Cross-scale redundancy was a significant predictor at all scales, 273 

although its strength decreased at finer scales until it was the weakest predictor at the finest scale 274 

(-0.018 ± 0.011, -0.015 ± 0.001, and -0.0059 ± 0.004 at ecoregion levels II, III, and IV 275 

respectively). Cross-scale redundancy also significantly negatively predicted standard deviation 276 

in species turnover at the finest scale (-0.005 ± 0.003). Within-scale redundancy was a 277 

significant predictor at the middle scale (-0.017 ± 0.006), and number of aggregations was a 278 

significant predictor of middling strength at the finest scale (-0.018 ± 0.004). 279 

 280 

Resilience-Collapse Test 1: Relationship between cross-scale resilience and abrupt shifts 281 

At all scales, resilience metrics synchronized significantly with abrupt community shifts 282 

(Figures 3, 4; Table S3). At the broadest scale (level II), cross-scale diversity (1.0 ± 0.53) and 283 

cross-scale redundancy (0.67 ± 0.55) synchronized with community change (Figure 4). At the 284 

middle scale (level III), number of aggregations (0.21 ± 0.20) and within-scale redundancy (0.62 285 

± 0.20) exhibited synchrony with community change (Figure 3), but cross-scale redundancy 286 

exhibited asynchrony (i.e., a negative model coefficient; -0.3 ± 0.19) with community change 287 

(Figures 3, 4). And at the finest scale (level IV), all resilience metrics synchronized with abrupt 288 
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community shifts: cross-scale diversity showed the strongest synchrony (0.58 ± 0.08; Figure 3), 289 

and number of aggregations showed the weakest synchrony (0.11 ± 0.09). 290 

 291 

Resilience-Collapse Test 2: Relationship between cross-scale resilience and community 292 

similarity 293 

At the broadest and middle scales (levels II, III), neither initial nor mean resilience metric 294 

values significantly predicted changes in community similarity over time (Table S2). But at the 295 

finest scale (level IV), initial values of cross-scale diversity (0.0002 ± 0.0001) and number of 296 

aggregations (0.0002 ± 0.0001) significantly, albeit weakly, predicted reduced community 297 

change (i.e., pushed Jaccard slopes closer to zero–no net community change; Table S2). 298 

 299 

DISCUSSION 300 

Using a half-century of subcontinental community data, we provide quantitative support 301 

for core predictions of ecological resilience theory regarding how ecological resilience relates to 302 

ecological stability and collapse. Per Holling’s call in his seminal manuscript on resilience theory 303 

(C. S. Holling, 1973), we found resilience is related to but distinct from stability. Importantly, 304 

our results distinguish ecological resilience from concepts allied with stability such as 305 

engineering resilience, “bounce-back” time to equilibrium, resistance, and elasticity (L. H. 306 

Gunderson, 2000; Pimm, 1984; Standish et al., 2014). We also show that shifts in cross-scale 307 

resilience metrics clearly predict and coincide with abrupt community shifts, but at the same 308 

time, resilience is weakly related to community change in terms of maintenance of a particular 309 

species assemblages over time. We also provide interpretability for cross-scale resilience 310 

metrics: we distinguish the roles of functional redundancy and diversity metrics of community 311 
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collapse and community similarity, respectively (G. Peterson et al., 1998; Walker, Kinzig, & 312 

Langridge, 1999), and we show number of aggregations (i.e., scale domains) may be an 313 

unresponsive metric if systems reorganize around similar numbers of scale domains during and 314 

post-collapse, meaning this metric may only detect extreme collapse events (Angeler et al., 315 

2019b; Roberts et al., 2019). 316 

Our results reaffirm the importance of avoiding the conflation of ecological resilience and 317 

ecological stability. Stability theory predicts a particular community composition (e.g., higher 318 

species richness) will reduce variance in system functionality but makes no assertions concerning 319 

alternative states (Allan et al., 2011; Cardinale et al., 2013; Tilman, 1996; Wagg et al., 2018). 320 

Additionally, stability typically does not consider ecological complexity features, such as spatial 321 

and temporal scaling structures or thresholds (Baho et al., 2017; Hillebrand et al., 2018). In 322 

contrast, resilience theory predicts resilient systems may exhibit wide ranges of variance, 323 

community composition will be dynamic and adaptive, and scaling patterns of functional 324 

redundancy and diversity within communities (instead of particular community compositions) 325 

will determine the ability of a system to remain within one of multiple alternative regimes 326 

(Allen, Angeler, Garmestani, Gunderson, & Holling, 2014; Angeler et al., 2019a; Chillo, Anand, 327 

& Ojeda, 2011; S. M. Sundstrom et al., 2018). Our results support these differences between 328 

stability and resilience: resilience metrics had low degrees of correlation with species richness, a 329 

metric that is closely correlated to stability and the ability of a system to “bounce back” from 330 

disturbances (Hautier et al., 2015; Ives & Carpenter, 2007; McCann, 2000; Mougi & Kondoh, 331 

2012; Tilman & Downing, 1994). That is, greater richness did not necessarily beget greater 332 

resilience. This finding contrasts with a pervasive conflation of richness and resilience 333 

(Bellwood & Hughes, 2001; J. Fischer et al., 2007; Oliver et al., 2015; Standish et al., 2014). As 334 
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expected, cross-scale diversity exhibited the highest correlation with richness, although its 335 

correlation was much less than typical cutoffs for collinearity. Cross-scale resilience metrics also 336 

did not predict variability in community composition (standard deviation in species turnover) 337 

except weakly at the finest scale. This supports the resilience theory prediction that systems may 338 

have low stability (high variance in species turnover) but high resilience (Holling, 1973). Our 339 

results also support the contention that the concept of ecological stability is nested within 340 

ecological resilience: resilience metrics constrained the magnitude of temporal community 341 

fluctuations (mean species turnover) but only weakly predicted variability in community 342 

fluctuations—which is the purview of stability theory (Angeler and Allen, 2016; Hautier et al., 343 

2015; Mougi & Kondoh, 2012). 344 

Similarly, resilience theory predicts systems with higher resilience will be more likely to 345 

retain similar structures and functions over time, but unlike stability, resilience theory makes few 346 

predictions on the maintenance of a particular species assemblage (Allen & Holling, 2010; 347 

Bellwood & Hughes, 2001; L. H. Gunderson, 2000). Our results support this premise. Cross-348 

scale resilience metrics were not strongly associated with maintenance of a particular group of 349 

species. Instead, resilience metrics predicted maintenance of overall community structure per 350 

their synchrony with abrupt community shifts across scales. That is, resilience metrics predict 351 

significant abrupt community shifts but not community similarity over time (Angeler et al., 352 

2019b). However, higher resilience metrics did weakly predict maintenance of community 353 

composition over time as well as constraining mean species turnover which still supports a 354 

connection between species composition and resilience.  355 

The cross-scale resilience model differentiates the roles of functional redundancy and 356 

functional diversity, and we corroborate this (Bellwood & Hughes, 2001; Elmqvist et al., 2003; 357 




